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Abstract
The algorithm and complexity of approximating the perma-
nent of a matrix is an extensively studied topic. Recently, its
connection with quantum supremacy and more specifically
BosonSampling draws a special attention to the average-
case approximation problem of the permanent of random
matrices with zero or small mean value for each entry. El-
dar and Mehraban (FOCS 2018) gave a quasi-polynomial
time algorithm for random matrices with mean at least
1/ polyloglog(n). In this paper, we improve the result by
designing a deterministic quasi-polynomial time algorithm
and a PTAS for random matrices whose module of mean is
at least 1/ polylog(n). We note that if the algorithm can be
further improved to work with a mean value that is a suffi-
ciently small 1/ poly(n), it will disprove a central conjecture
for quantum supremacy.

Our algorithm is also much simpler and has a better and
flexible trade-off for running time. The running time can be
quasi-polynomial in both n and 1/ε, or PTAS (polynomial
in n but exponential in 1/ε), where ε is the approximation
parameter.

1 Introduction
The computational complexity of computing the per-
manent of a matrix is of central importance to com-
plexity theory and has been extensively studied ever
since Valiant’s seminal result [Val79b]. On one hand,
the problem is algebraic in nature and plays an impor-
tant role in the study of algebraic complexity [Val79a,
BCS13]. In particular, its relation with the determi-
nant is an important topic [MR04, CCL10]. On the
other hand, it also exhibits rich combinatorial proper-
ties. The permanent can be viewed as counting the
(weighted) number of perfect matchings of a bipartite
graph and graph (perfect) matching is one of the most
important graph problems in the study of algorithm and
complexity [Edm65, Val79b, Val08].

Since the exact computation of the permanent is
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already #P-hard for matrices with non-negative entries,
or even 0/1 entries [Val79b], more recent research
focuses on either the approximation of the permanent
or the average-case complexity of the problem where
the matrices are sampled from certain distributions.

In the approximation approach, we require the al-
gorithm to return a number Z ′ such that, if the actual
value of the permanent of the input matrix is Z, the
computed number Z ′ satisfies |Z − Z ′| ≤ ε |Z| within
running time poly(n, 1ε ) where ε > 0 is the approxi-
mation parameter. This is called a fully polynomial-
time approximation scheme (FPTAS). And its random-
ized relaxation is called a fully polynomial-time random-
ized approximation scheme (FPRAS), where we require
that |Z − Z ′| ≤ ε |Z| holds with high probability. If
the running time is quasi-polynomial in terms of n and
1
ε , namely 2poly(log(n), log

1
ε ), then it is called a quasi-

polynomial time approximation scheme. If we only re-
quire the running time to be polynomial in n but not
necessary in 1

ε , we call it polynomial-time approxima-
tion scheme (PTAS). On the other hand, in the average-
case approach, we allow the algorithm to be incorrect
on a small fraction of instances with respect to some
distributions over matrices. Usually, this distribution
is over matrices with i.i.d. random entries and the al-
gorithm is required to output either the exact value or
an approximation of the permanent on at least 1− o(1)
fraction of the instances.

In fact, several worst-case approximation tractabil-
ity and hardness results were known. For a matrix
with non-negative entries, Jerrum, Sinclair and Vigoda
gave a remarkable FPRAS to approximate its perma-
nent [JSV04] via random sampling by Markov chain
Monte Carlo (MCMC). How to derandomize this algo-
rithm remains a long-standing open problem. However,
it is impossible to extend this result to general matri-
ces since it is already #P-hard to compute the sign of
the permanent with possibly negative entries. Indeed,
negative or complex values put this problem in GapP, a
superset of #P [FFK94]. This difficulty is referred to as
the “interference barrier”. For example, random sam-
pling based algorithms are no longer applicable since
we cannot define negative or complex probability. For
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specific families of complex matrices, there are quasi-
polynomial time approximation schemes by Barvinok’s
interpolation [Bar16, Bar19].

The above algorithms and hardness results are all
worst-case analysis. What do we know about the
average-case complexity? It turns out that, for ex-
act counting, the average-case problem remains #P-
hard both for finite field entries and complex Gaus-
sian entries [CPS99, AA13]. This leaves the com-
plexity of the average-case approximation of the per-
manent an intriguing problem. Yet, very little was
known when both average-case analysis and approxi-
mation are considered at the same time. More gener-
ally, while we have #P-hardness results for all other
settings including worst-case approximation problems
and average-case exact problems, essentially no hard-
ness result is known for average-case approximate count-
ing problems. On the tractability side, some recent al-
gorithms and techniques show that random instances
might be much easier than the worst-case for approx-
imate counting [JKP19, LLLM19, MB19, EM18]. Our
result also adds to this list.

An important motivation for studying the complex-
ity of approximating the permanent of random matrices
stems from the so-called BosonSampling program ini-
tiated by Aaronson and Arkhipov [AA13] in quantum
computing. In [AA13], the conjectured #P-hardness
of approximating the permanent of Gaussian matri-
ces (Permanent-of-Gaussian’s Conjecture) is connected
to the sampling problem of linear optical networks so
that the existence of any efficient classical simulation of
this optical sampling process will imply P#P=BPPNP,
and hence the collapse of the polynomial hierarchy by
Toda’s theorem. This provides an explicitly defined
problem which near-term quantum computing devices
can efficiently solve while even today’s most powerful
classical supercomputer cannot. Such a dramatic con-
trast in computing powers, called quantum supremacy,
poses the first serious challenge to the extended Church-
Turing thesis and has been recently experimentally
achieved by the Google team using a different model
based on the random quantum circuit sampling prob-
lem [AAB+19] while the record of BosonSampling ex-
periment is recently updated by [WQD+19].

The complexity of approximating the permanent
of random matrices is obviously of vital importance to
BosonSampling as it serves as one of the two conjectures
on which the theory of BosonSampling bases. In partic-
ular, it is assumed in BosonSampling that approximat-
ing the permanent of random matrices whose entries
are i.i.d. sampled from the normal distribution of zero
mean value and unit variance is #P-hard. The result
is strengthened in [EM18] showing that a biased distri-

bution with mean at most 1/nc for some large c is also
good enough for BosonSampling. There is no clue yet
on how one can prove such hardness results and it is
not even clear whether they are true or not. On the
other side, a surprising and interesting tractable result
was obtained by Eldar and Mehraban [EM18]. They
provided a quasi-polynomial time algorithm to approx-
imate the permanent of random matrices with mean of
1/ polyloglog(n), which implies that the #P-hardness
is unlikely to hold for these families of random matri-
ces. This raises the interesting open question of whether
the algorithm can be extended to the case with mean
value 1/ poly(n) and disprove the hardness conjecture
of BosonSampling or there is a “phase transition” in
the complexity of approximating the permanent with
respect to the mean of matrix entries.

1.1 Our results In this paper, we provide an expo-
nential improvement in terms of the tractable region
of the mean values to the problem of approximating
the permanent of random matrices with vanishing mean
value. We design a deterministic quasi-polynomial time
algorithm and a PTAS that can compute the multiplica-
tive approximation for 1− o(1) fraction of random ma-
trices whose module of mean is at least 1/ polylog(n).
See Theorem 3.1, Corollary 3.1, Corollary 3.2 for more
rigorous statements of our results. The strength of our
results lies in the following four aspects.

Firstly and most importantly, the range of the
tractable mean value parameters is exponentially better
than that of [EM18]. In [EM18], their algorithm can
only approximate the permanent of a random matrix
with mean value of at least 1/ polyloglog(n). Our
algorithm works for all mean value whose module is at
least 1/ polylog(n). The exact range of mean values for
which such approximation exists is extremely important
due to its role in the “quantum supremacy”. If one
can further improve the mean to some 1/ poly(n) that
is sufficiently small, it will disprove the conjecture
in [AA13].

Secondly, the algorithm in [EM18] only works for
some, but not all, mean values µ > 1/ polyloglog(n).
This is a very strange situation due to their proof
techniques and is rather counterintuitive as one would
expect that the larger the mean value is, the easier it
is to approximate the permanent. There is not even an
algorithm for them to check whether a given mean is
computable or not for their algorithm since they used
a probabilistic argument while our algorithm does not
suffer from such problems and works for all complex µ
with |µ| > 1/ polylog(n).

Thirdly, our algorithm uses a completely different
idea and is arguably simpler. The simplicity of our al-
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gorithm also enables us to extend our result to a much
larger family of entry distributions. While the technique
of [EM18] is very interesting and uses Barvinok’s inter-
polation method for approximate counting with several
new developments of the technique in a few directions,
the need to prove the zero-freeness of the polynomial in
a segment-like region made the proof rather involved
and caused the drawbacks of their result mentioned
above in the previous two items. In our algorithm, we
avoid all these complications and simply truncate a sim-
ple expansion of the permanent directly to O(lnn+ln 1

ϵ )
terms and compute them by brute-force. We note that
in usual usage of Barvinok’s method, a truncation of
the polynomial directly rather than its logarithm will
not succeed. To prove the correctness of our algorithm,
we need a careful study of the distribution of the per-
manent of random matrices. To this end, we use several
techniques inspired by the analysis of [RW04]. The re-
sult and analysis in [RW04] are asymptotic while we
need much more careful quantitative bounds which we
develop carefully in this paper.

Lastly, the running time of our algorithm is also
better and flexible. It can be quasi-polynomial in both
n and 1/ε, where ε is the approximation parameter. We
can also make it a PTAS, which is polynomial in n but
exponential in 1/ε. In particular, when ε > n−ρ for
some fixed and universal constant ρ > 0, the algorithm
is extremely simple and runs in only linear time. It
is not clear how to make the previous algorithm in
polynomial time rather than quasi-polynomial time even
for a fixed constant ε.

This work leaves several interesting open problems.
First, the most important problem left open is to ei-
ther show the transition of complexity with respect to
the mean value and prove that the corresponding prob-
lem is hard when the mean value is 1/poly(n) or dis-
prove the Permanent-of-Gaussian conjecture of Boson-
Sampling. With our technique only, it is rather hard to
go beyond the 1/polylog(n) barrier and essential new
ideas seem necessary if this is ever possible. Second,
while we have been focusing exclusively on the prob-
lem of approximating the permanent and therefore it is
only directly relevant to the BosonSampling scheme of
quantum supremacy, we expect that our technique may
find applications in understanding other average-case
approximate counting problems and the hardness as-
sumptions in other quantum supremacy schemes such as
the instantaneous quantum computing model [BJS10]
and the random circuit sampling model [AAB+19]. We
believe that such generalizations are possible as the
hardness conjectures behind different models of quan-
tum supremacy are of the same flavor and it is usu-
ally possible to generalize results from one model to the

other (see e.g. [BFNV18]).
The rest of the paper is organized as follows. In

Section 2, we introduce the notations used in this paper.
We state and present the proof outline in Section 3. The
remaining sections contain the technical lemmas used in
Section 3.

2 Preliminary
In this paper we use [n] to denote the set {1, · · · , n}.
The set of natural numbers, real numbers, and complex
numbers are denoted as N, R, and C respectively. We
use nk ≜ n(n−1) · · · (n−k+1) to denote the downward
factorial and Cn,k, Pn,k to denote all k-subsets of [n]
and all k-permutations of [n] respectively. Mn(C) to
denote the set of all n× n complex matrices. δi,j is the
Kronecker function, i.e., δi,j = 1 if i = j and δi,j = 0
otherwise.

Definition 2.1. Suppose x1, x2, · · · , xn ∈ C and 0 ≤
k ≤ n, the power sum is defined by

Sk(x1, x2, · · · , xn) ≜
n∑

i=1

xki

and the kth elementary symmetric polynomial is defined
by

ek(x1, x2, · · · , xn) ≜
∑

{i1,··· ,ik}∈Cn,k

xi1 · · ·xik

with convention e0(x1, x2, · · · , xn) = 1. We will write
Sk(n) and ek(n) if the variables xi’s are clear from
context.

Definition 2.2. The entry distribution Dµ with mean
value µ ∈ C is a distribution over complex numbers such
that

Ex∼Dµ [x] = µ, Varx∼Dµ [x] = 1,

and
Ex∼Dµ

|x− µ|3 = ρ <∞.

We use D to denote D0.

In this paper, we use ξ to denote the quasi-variance
of Dµ,

ξ = Ex∼Dµ(x− µ)2.

The norm of the quasi-variance is upper bounded by the
variance as

|ξ| =
∣∣Ex∼Dµ

(x− µ)2
∣∣

≤ Ex∼Dµ
|x− µ|2

= Varx∼Dµ
(x) = 1.

(2.1)
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Definition 2.3. The matrix distribution Mn, µ is the
distribution over R ∈ Mn(C) such that the entries of R
are i.i.d. sampled from Dµ.

Our aim is to design an average-case approximation
algorithm for the permanent of a random matrix R ∼
Mn, µ for µ = polylog−1(n). Following the notation
used in [EM18], we introduce a matrix X = J + zA
where z is a complex variable taken to be 1/µ in the end,
J is the all-ones matrix, and A is a random matrix with
i.i.d. entries sampled from D. We note that X

z ∼ Mn, µ

with z = 1/µ and thus it is equivalent to compute the
permanent of matrix X.

Definition 2.4. Suppose A ∈ Mn(C),B ∈ Mk(C).
We write B ⊆k A if B is a k × k submatrix of A.

Lemma 2.1. Suppose A ∈ Mn(C) is any matrix and J
is the all-ones matrix of size n. For k = 0, 1, . . . , n,
define

(2.2) ak =
1

nk

∑
B⊆kA

Per(B),

Then for all z ∈ C we can write

Per(J + zA)

n!
=

n∑
k=0

akz
k.

Proof. This identity can be obtained by simple calculate
and similar formula has appeared in [EM18, RW04].
Given any n × n matrix M , define GM to be the
corresponding complete bipartite graph with n vertices
on each side, both numbered from 1 to n, where the
weight of edge e = (i, j) is simply Mi,j . Define the
weight of any perfect matching in GM to be the product
of weights of all edges in it. By definition, permanent
of M can be seen as weights of all perfect matchings
of GM . Ideally, we can split any perfect matching of
GJ+zA into combinations of a k-matching of GJ and a
(n − k)-matching of GzA for some k such that the two
matchings together form a perfect matching. Regarding
Per(J+zA) as a polynomial of z, the coefficient of zk is
simply the summation of weights over all k-matchings
of GA times the weights of all perfect matchings in the
left graph of GJ , which is (n − k)!. Thus, the lemma
follows by rescaling.

We record here some basic inequalities that we use
extensively in the proofs

(2.3)
n! ≥

(n
e

)n
∀n ∈ N ,

(1 + x)y ≤ exy ∀x, y > 0 .

And we always assume 00 = 1 in this paper.

3 Main Result
In this section, we state our main result and describe
the overall proof structures. The key technical lemmas
are proved in the later sections.

Theorem 3.1. For any constant c ∈ (0, 18 ), there exists
a deterministic quasi-polynomial time algorithm P such
that, given both a matrix R sampled from Mn, µ defined
in Definition 2.3 for some complex µ : |µ| ≥ ln−c(n) and
a real number ε ∈ (0, 1) as input, the algorithm computes
in time nO(lnn+ln 1

ε ) a complex number P(R, ε) that
approximates the permanent Per(R) on average in the
sense that

P
(∣∣∣∣1− P(R, ε)

Per(R)

∣∣∣∣ ≤ ε

)
≥ 1− o(1),

where the probability is over the random matrix R.

Proof. As discussed in Section 2, we will work with the
permanent of matrix X = J + zA where J is the all-
ones matrix. In the following, we design an algorithm
that can approximate Per(X) on average for A ∼ Mn.
The algorithm P and its performance then follow by a
simple scaling argument.

Since Per(X) is a summation of n! products, it
is convenient to focus on computing the normalized
permanent Per(X)

n! , which can be written as
∑n

k=0 akz
k

by Lemma 2.1 for

ak =
1

nk

∑
B⊆kA

Per(B).

In the technical proof of the paper, we will fre-
quently choose parameters that are either absolute con-
stants or quantities depending on n and ε. These
parameters need to satisfy several constraints for the
claims in the proof to hold. It is therefore convenient
and clear to explicitly enumerate them and their con-
straints in one place. In the rest of the proof, we will
use a set of parameters that form any solution of the
following constraints.

(3.4)



0 < c < ν < 1
8 ,

0 < γ < β < 1
2 ,

0 < γ < ν − c,

|z| ≤ (lnn)c,

t = lnn+ ln 1
ε ,

θ(n) = ln lnn.

Note that z can be a complex number.
To approximate the normalized permanent of X,

our algorithm computes the first t + 1 coefficients
a0, a1, . . . , at and outputs the number

∑t
k=0 akz

k. For
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such choice of t, the algorithm has time complexity
t ·
(
n
t

)(
n
t

)
t! = O(n2t), which is quasi-polynomial. The

rest of the proof is to show that the first t + 1 terms
in the summation is actually an Θ(ε) approximation of
Per(X)

n! with high probability. Note that this probability
could depend on parameters defined in Eq. (3.4) since
they are all fixed constants.

The easy part is to prove that the remaining terms
are indeed small with high probability. Namely, with
probability 1− o(1),

(3.5)
∣∣∣∣∣

n∑
k=t+1

akz
k

∣∣∣∣∣ ≤ n−γ ε

This is small in absolute sense. To show that it is small
relatively, we need to give a lower bound of

∑t
k=0 akz

k.
Namely, with probability 1− o(1),

(3.6)
∣∣∣∣∣

t∑
k=0

akz
k

∣∣∣∣∣ = Ω(n−γ).

As the constant in Θ(n−γ) does not depend on ε, these
two facts together give a proof of the main theorem.
At first glance, we might think that γ, as in Eq. (3.4),
could be arbitrarily close to 0, which means n−γ could
be arbitrarily close to 1. However, we would notice from
the detailed proofs that the probability for Eq. (3.6)
to hold depends highly on γ. In particular, we need
n = exp

[
Ω(γ−

1
1−c )

]
as in Lemma 6.6.

Eq. (3.5), the easy part, is proven in Lemma 4.3
while Eq. (3.6) is more difficult. To overcome this, we
consider symmetric polynomials of the column sum of
matrix A to approximate the permanent.

For all j = 1, 2, . . . , n, define

(3.7) Cj ≜
1√
n

n∑
i=1

ai,j ,

where ai,j is the (i, j)-the entry of matrix A and for all
k = 0, 1, 2, . . . , n,

Vk ≜ 1

nk/2
ek(C1, C2, . . . , Cn),(3.8)

Dk ≜ 1

nk/2
Sk(C1, C2, . . . , Cn),(3.9)

where polynomials Sk and ek are defined in Definition
2.1.

Consider ak and Vk as multivariate polynomials of
ai,j ’s. Note that, as n → ∞, Vk and ak share almost
the same monomials and similar weights, i.e. 1

nk/2 and
1
nk , thus nearly of the same value. Formally, we prove
in Lemma 4.4 that with probability 1− o(1),

(3.10)
∣∣∣∣∣

t∑
k=0

akz
k −

t∑
k=0

Vkz
k

∣∣∣∣∣ ≤ n−β = o(n−γ),

which is negligible compared to the target n−γ .
As proven in Lemma 5.1, Vk satisfy the so-called

Newton’s identities, i.e. for k ≥ 2,
(3.11)

Vk =
Vk−1V1 − Vk−2D2 +

∑k−1
i=2 (−1)iVk−1−iDi+1

k
.

Furthermore, we prove in Lemma 5.3 that D2 is
concentrated at ξ, the quasi-variance of D, and in
Lemma 5.4 that Dk is inverse-polynomially small for
k ≥ 3, both with high probability. This motivates us
to consider V ′

k, an asymptotic approximation of Vk, as
follows

(3.12) V ′
k =


1, k = 0,

V1, k = 1,
V ′
k−1V

′
1−V ′

k−2ξ

k , k ≥ 2.

Note that k can be larger than n for notation conve-
nience when analyzing

∑∞
k=0 V

′
kz

k. And we prove in
Lemma 7.1 that Vk and V ′

k are close and in Lemma 7.2
that with probability 1− o(1),

(3.13)
∣∣∣∣∣

t∑
k=0

Vk z
k −

t∑
k=0

V ′
k z

k

∣∣∣∣∣ = O(nc−ν) = o(n−γ).

Comparing the two recursions, we use the “proba-
bilists’ Hermite polynomials” to explicitly express (V ′

k)’s
in Eq. (6.27). Due to Lemma 6.5, the summation∑t

k=0 V
′
kz

k can be estimated by
∑∞

k=0 V
′
kz

k with a negli-
gible n−ω(1) additive error by an upper-bound of “prob-
abilists’ Hermite polynomials” in Lemma 6.1. This, to-
gether with Eqs. (3.10) and (3.13), implies that it is
enough to give a Ω(n−γ) lower-bound of

∣∣∑∞
k=0 V

′
kz

k
∣∣.

On the other hand, from Eq. (6.28),
∑∞

k=0 V
′
kz

k is
simply eV1z− ξz2

2 , where V1 is the normalized average of
all entries in A. By Chebyshev’s inequality, we know
that |V1| is small with high probability. This can be used
to prove the fact (see Lemma 6.6) that with probability
1− o(1), ∣∣∣∣eV1z− ξz2

2

∣∣∣∣ ≥ n−γ ,

which completes the proof.

If we relax the approximation requirement a bit, we
can simply compute V1 and return n!eV1z− ξz2

2 as an ap-
proximation of Per(X). This is a truly polynomial time
algorithm and extremely simple. By the above argu-
ment, we can get the following approximation guaran-
tee.

Corollary 3.1. For any constant c ∈ (0, 18 ) and 0 <
ρ < 1

8 − c, there exists a deterministic polynomial
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time algorithm P such that, given a matrix R sampled
from Mn, µ defined in Definition 2.3 for |µ| ≥ ln−c(n),
the algorithm computes a complex number P(R) that
approximates the permanent Per(R) on average in the
sense that

P
(∣∣∣∣1− P(R)

Per(R)

∣∣∣∣ ≤ n−ρ

)
= 1− o(1),

where the probability is over the random matrix R.

The drawback of this simple algorithm is that we
do not have a parameter ε to control the approximation
precision. However, for large n this is already a very
good approximation algorithm while for small n we
can just compute Per(R) directly by Ryser formula
in time 2n. By this idea, we can convert the above
algorithm into a PTAS but not FPTAS, whose running
time is polynomial in n but possibly exponential in 1

ε .
Let us fix a constant 0 < ρ < 1

8 − c. For a given
approximation parameter ε, if ε > n−ρ we use the
above polynomial time algorithm and otherwise simply
compute it directly. The running time is bounded by
max

{
poly(n), 2ε

− 1
ρ
}

, which shows that the modified
algorithm is a PTAS.

Corollary 3.2. For any constant c ∈ (0, 18 ), there
exists a deterministic PTAS to approximate Per(R) for
1 − o(1) fraction of random matrices R sampled from
Mn, µ defined in Definition 2.3 for |µ| ≥ ln−c(n).

4 Estimation with Summation of Columns
In this section, we prove that the two summations∑n

k=t+1 akz
k and

∑t
k=0(ak−Vk)zk are both small with

high probability. Their proofs are similar and simply
follow from the fact that they have zero mean and
exponentially decaying variance.

Recall from Eqs. (2.2) and (3.8) that


ak =

1

nk

∑
B⊆kA

Per(B),

Vk =
1

nk/2

∑
{j1,··· ,jk}∈Cn,k

Cj1 · · ·Cjk .

Lemma 4.1. For any k, ℓ ∈ {0, 1, . . . , n},

E[ak] = δk,0 , E[ak aℓ] =
δk,ℓ
k!
.

Proof. As a0 ≡ 1, it holds that E[a0] = 1. For k > 0,

E[ak] =
1

nk

∑
B⊆kA

E[Per(B)]

=
1

nk

∑
{i1,··· ,ik}∈Cn,k

{j1,··· ,jk}∈Cn,k

E

 ∑
σ∈Pk,k

k∏
t=1

ait,jσt



=
1

nk

∑
{i1,··· ,ik}∈Cn,k

(j1,··· ,jk)∈Pn,k

E

[
k∏

t=1

ait,jt

]
.

(4.14)

By the fact that the entries of A are i.i.d. and have 0
mean value, the above expectation is 0. This proves
E[ak] = 0 for k > 0.

For the second part, we first define the following
notation for convenience.
(4.15)

Λ(J, I, J ′, I ′) ≜
∑

{j1,··· ,jk}∈J
(i1,··· ,ik)∈I

∑
{j′1,··· ,j

′
ℓ}∈J′

(i′1,··· ,i
′
ℓ)∈I′

E

[
k∏

t=1

ait,jt

ℓ∏
t=1

ai′t,j′t

]
,

where J ⊆ Cn,k, I ⊆ Pn,k, J
′ ⊆ Cn,ℓ, I

′ ⊆ Pn,ℓ and
k, l ∈ [n]. Since all the entries of A are i.i.d. and of
zero mean, the expectation of

∏k
t=1 ait,jt

∏ℓ
t=1 ai′t,j′t is

non-zero only if

{(i1, j1), · · · , (ik, jk)} = {(i′1, j′1), · · · , (i′l, j′l)}.

Thus, we could simplify Λ(J, I, J ′, I ′) into

(4.16) Λ(J, I, J ′, I ′) =
∑

{j1,··· ,jk}∈J∩J′

(i1,··· ,ik)∈I∩I′

k∏
t=1

E |ait,jt |
2
.

In particular, Λ(J, I, J ′, I ′) = 0 for k ̸= ℓ. Then we
could express E[akaℓ] as follows.

E[akaℓ] =
1

nk nℓ

∑
B⊆kA

∑
B′⊆ℓA

E
[
Per(B)Per(B′)

]
.

=
1

nk nℓ
Λ(Cn,k, Pn,k, Cn,ℓ, Pn,ℓ)

=
δk,ℓ
(nk)2

∑
{j1,··· ,jk}∈Cn,k

(i1,··· ,ik)∈Pn,k

k∏
t=1

E |ait,jt |
2

=
δk,ℓ
(nk)2

(
n

k

)
n!

k!
=
δk,ℓ
k!
.

Here, we use the fact that the variance of each entry is
1.
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Lemma 4.2. For any m ∈ {0, 1, · · · , n} and k, ℓ ∈
{1, 2, · · · , n},

E[Vm] = δm,0, E
[
(Vk − ak)(Vℓ − aℓ)

]
≤ δk,ℓ

k(k − 1)

2n · k!
.

Proof. By definition, V0 ≡ 1. Thus, E[V0] = 1. For
m > 0, similar to Lemma 4.1,

E[Vm] =
1

nm/2

∑
{j1,··· ,jm}∈Cn,m

E[Cj1 · · ·Cjm ]

=
1

nm

∑
{j1,··· ,jm}∈Cn,m

i1,··· ,im∈[n]

E

[
m∏
t=1

ait,jt

]
= 0.

For E
[
(Vk − ak)(Vl − al)

]
, note that

Vk − ak =
∑

{j1,··· ,jk}∈Cn,k

(i1,··· ,ik)∈Pn,k

k∏
t=1

ait, jt

(
1

nk
− 1

nk

)

+
∑

{j1,··· ,jk}∈Cn,k

(i1,··· ,ik)∈[n]k−Pn,k

k∏
t=1

ait,jt ·
1

nk
.

We can then expand the expectation with Λ(·, ·, ·, ·) (see
Eq. (4.15)).

E
[
(Vk − ak)(Vℓ − aℓ)

]
=

(
1

nk
− 1

nk

)(
1

nℓ
− 1

nℓ

)
· Λ(Cn,k, Pn,k, Cn,ℓ, Pn,ℓ)

+

(
1

nk
− 1

nk

)
1

nℓ
· Λ(Cn,k, Pn,k, Cn,ℓ, [n]

ℓ − Pn,ℓ)

+
1

nk

(
1

nℓ
− 1

nℓ

)
· Λ(Cn,k, [n]

k − Pn,k, Cn,ℓ, Pn,ℓ)

+
1

nk+ℓ
· Λ(Cn,k, [n]

k − Pn,k, Cn,ℓ, [n]
ℓ − Pn,ℓ).

By Eq. (4.16), E
[
(Vk − ak)(Vℓ − aℓ)

]
is non-zero only if

k = ℓ, which proves for k ̸= ℓ. When k = ℓ,

E
[
(Vk − ak)(Vℓ − aℓ)

]
=

(
1

nk
− 1

nk

)2

· Λ(Cn,k, Pn,k, Cn,k, Pn,k)

+
1

n2k
· Λ(Cn,k, [n]

k − Pn,k, Cn,k, [n]
k − Pn,k)

=

(
1

nk
− 1

nk

)2 ∑
{j1,··· ,jk}∈Cn,k

(i1,··· ,ik)∈Pn,k

k∏
t=1

E|ait, jt |
2

+
1

n2k

∑
{j1,··· ,jk}∈Cn,k

(i1,··· ,ik)∈[n]k−Pn,k

k∏
t=1

E|ait, jt |
2

=

(
1

nk
− 1

nk

)2(
n

k

)
nk +

1

n2k

(
n

k

)
(nk − nk)

=
nk − nk

k!nk
=

1

k!

[
1−

k−1∏
t=0

(
1− t

n

)]

≤ 1

k!

k−1∑
t=0

t

n
=
k(k − 1)

2n · k!
.

Here, the last inequality comes from the union bound if
we consider the probability that none of the k indepen-
dent bad events, each of which happens with probability
t
n , happen.

Then we prove Eqs. (3.5) and (3.10) as follows.

Lemma 4.3. With parameters satisfying Eq. (3.4), it
holds that

P

(∣∣∣∣∣
n∑

k=t+1

akz
k

∣∣∣∣∣ ≤ n−γ ε

)
≥ 1− o(1).

Proof. To apply Chebyshev’s inequality, we first calcu-
late the variance of

∑n
k=t+1 akz

k. By Lemma 4.1, we
have

E

[
n∑

k=t+1

akz
k

]
=

n∑
k=t+1

E[ak] zk = 0,

and

Var

(
n∑

k=t+1

akz
k

)
= E

∣∣∣∣∣
n∑

k=t+1

akz
k

∣∣∣∣∣
2

=
n∑

k,l=t+1

E(akaℓ) zkzℓ =
n∑

k=t+1

|z|2k

k!
.
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Applying Chebyshev’s inequality, we have
(4.17)

P

[∣∣∣∣∣
n∑

k=t+1

akz
k

∣∣∣∣∣ ≥ n−γ ε

]
≤n

2γ

ε2
Var

(
n∑

k=t+1

akz
k

)

≤n
2γ

ε2

n∑
k=t+1

|z|2k

k!
.

As chosen in Eq. (3.4),

(4.18)
{
|z| ≤ (lnn)

1
8

t = lnn+ ln 1
ε .

In this case, for any k ≥ t and large n,

|z|2(k+1)

(k + 1)!
÷ |z|2k

k!
=

|z|2

k + 1
≤ |z|2

t+ 1
< 1/2.

We can continue Eq. (4.17) as

P

[∣∣∣∣∣
n∑

k=t+1

akz
k

∣∣∣∣∣ ≥ n−γ ε

]
≤ n2γ

ϵ2

∞∑
k=t+1

|z|2k

t!2k−t

≤ n2γ |z|2t

ε2 t!
.

Since t = lnn + ln 1
ε , it is clear that t!

|z|2t is super-
polynomial for large n, which means

(4.19) P

[∣∣∣∣∣
n∑

k=t+1

akz
k

∣∣∣∣∣ ≥ n−γ ε

]
= o(1).

Lemma 4.4. With all parameters satisfying Eq. (3.4),

P

(∣∣∣∣∣
t∑

k=0

akz
k −

t∑
k=0

Vkz
k

∣∣∣∣∣ ≤ n−β

)
= 1− o(1).

Proof. It follows from Lemmas 4.1 and 4.2 that

E[Vk] = E[ak] = δk,0, V0 = a0 ≡ 1.

This implies that

Var

(
t∑

k=0

akz
k −

t∑
k=0

Vkz
k

)

=E

[
t∑

k=1

(Vk − ak)z
k

][
t∑

k=1

(
Vk − ak

)
zk

]
.

With Lemma 4.2, we can then simplify the expansion.

Var

(
t∑

k=0

akz
k −

t∑
k=0

Vkz
k

)

=

t∑
k=0

|z|2k E
[
(ak − Vk)(ak − Vk)

]
≤

t∑
k=0

k(k − 1)

2n · k!
|z|2k =

|z|4

2n

t−2∑
k=0

|z|2k

k!
≤ |z|4 e|z|2

2n
,

where the last step comes from the Taylor expansion of
e|z|

2 .
Applying Chebyshev’s inequality, we acquire that

P

(∣∣∣∣∣
t∑

k=0

akz
k −

t∑
k=0

Vkz
k

∣∣∣∣∣ ≥ n−β

)
≤ |z|4 e|z|2

2n1−2β
.

Since β < 1
2 and |z| ≤ (lnn)

1
8 , this probability is in fact

o(1).

5 Upper Bounds of the Power-Sum of Columns
In this section, we establish the recursion for Vk’s and
a concentration bound of Dk. This uses the elementary
symmetric polynomial and moment inequalities.

5.1 Newton’s Identities in Terms of Symmetric
Polynomials The elementary symmetric polynomials
and power sums, as defined in Definition 2.1, follow
the so-called Newton’s identities. We give the following
elementary derivation for reader’s convenience.
Lemma 5.1. Given variables x1, x2, . . . , xn and any
m ∈ [n], we have

em(n) =
1

m

m−1∑
k=0

(−1)kem−k−1(n)Sk+1(n).

Proof. Let us introduce auxiliary variables Qm,k defined
by

Qm,k ≜
∑

{j1,··· ,jm}∈Cn,m

xj1xj2 · · ·xjm
m∑
i=1

xk−1
ji

for any 0 ≤ m ≤ n, k ≥ 1 with the convention Q0,k ≡ 0
for k ≥ 1. By definition, Qm,1 = mem(n), Q1,k = Sk.

Then we consider a counting problem: choose a
(m − 1)-subset A of [n] together with an i ∈ [n], and
the contribution of this choice is xki

∏
j∈A xj . On the

other hand, we can partition all choices by the criterion
whether k ∈ A. Thus,

Qm,k +Qm−1,k+1 = em−1(n)Sk

holds for all m ≥ 1. Solving Qm,1, the lemma
immediately follows.
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5.2 A Third Moment Inequality By some calcu-
lation, we can derive the following upper-bound of the
absolute third moment of a sequence of i.i.d. complex
random variables.

Lemma 5.2. Suppose X1, X2, · · · , Xn is a sequence of
i.i.d. random variables following distribution D, then
there exists an absolute constant η > 0 such that

E
∣∣∣∣∑n

i=1Xi√
n

∣∣∣∣3 ≤ η

(
1 +

ρ√
n

)
.

Proof. Let{
σ1 =

√
EX∼D[Re(X)2], σ2 =

√
EX∼D[Im(X)2],

ρ1 ≜ EX∼D |Re(X)|3 , ρ2 ≜ EX∼D |Im(X)|3 ,

and
xi ≜ Re(Xi), yi ≜ Im(Xi).

Since ρ <∞, ρ1 and ρ2 exists. For m ∈ [n], define

Rm ≜
m∑
j=1

xj , Tm ≜
m∑
j=1

yj

Then we could derive the following recursions.

E |R2k|3 =E |Rk + (R2k −Rk)|3

≤E [|Rk|+ |R2k −Rk|]3

=E |Rk|3 + E |R2k −Rk|3

+ 3E |Rk|2 |R2k −Rk|+ 3E |Rk| |R2k −Rk|2

=2E |Rk|3 + 6ER2
kE |Rk|

≤2E |Rk|3 + 6ER2
k

√
ER2

k

=2E |Rk|3 + 6kσ2
1 ·

√
kσ1.

E |R2k+1|3 ≤E [|R2k|+ |x2k+1|]3

≤E |R2k|3 + E |x2k+1|3

+ 3E |R2k|2 |x2k+1|+ 3E |R2k| |x2k+1|2

≤E |R2k|3 + E |x2k+1|3

+ 3ER2
2k

√
Ex22k+1 + 3

√
ER2

2kEx
2
2k+1

=E |R2k|3 + ρ1 + 6kσ3
1 + 3

√
2kσ3

1 .

Applying induction with the above rules, it is easy to
see that

E |Rn|3 ≤ nρ1 + σ3
1

∑
i≥1

[
6
( n
2i

)3/2
+

6n

2i
+ 3

√
2

√
n

2i

]
≤ C ′

(
nρ1 + n3/2σ3

1

)

for some constant C ′. A similar reasoning for the
imaginary part gives

E |Tn|3 ≤ C ′
(
nρ2 + n3/2σ3

2

)
.

For 0 ≤ k ≤ n, we also have

E |Rn|2 |Tn|

=E |Rk + (Rn −Rk)|2 |Tk + (Tn − Tk)|

≤E
[
|Rk|2 |Tk|+ |Rk|2 |Tn − Tk|

+ 2 |Rk| |Rn −Rk| |Tk|+ 2 |Rk| |Rn −Rk| |Tn − Tk|

+ |Rn −Rk|2 |Tk|+ |Rn −Rk|2 |Tn − Tk|
]

≤ER2
k |Tk|+ ER2

k

√
ET 2

n−k

+ 2
√
ER2

k ET 2
k

√
ER2

n−k + 2
√
ER2

k

√
ER2

n−k ET 2
n−k

+ ER2
n−k

√
ET 2

k + ER2
n−k |Tn−k|

=E
[
|Rk|2 |Tk|+ |Rn−k|2 |Tn−k|

]
+ 3σ2

1σ2
√
k(n− k)(

√
k +

√
n− k).

This establishes that

E |Rn|2 |Tn| ≤ nE
∣∣x21y1∣∣+ C ′′n3/2σ2

1σ2,

for some constant C ′′. Symmetrically, we have

E |Rn| |Tn|2 ≤ nE
∣∣x1y21∣∣+ C ′′n3/2σ1σ

2
2 .

Therefore,

E

∣∣∣∣∣
∑n

j=1Xj√
n

∣∣∣∣∣
3

=n−
3
2E |Rn + iTn|3

≤n−
3
2E
[
|Rn|3 + |Tn|3 + 3 |Rn|2 |Tn|+ 3 |Rn| |Tn|2

]
≤n−

3
2

[
C ′n(ρ1 + ρ2) + C ′n

3
2

(
σ3
1 + σ3

2

)
+ 3C ′′n

3
2σ1σ2(σ1+σ2) + 3nE

(
|x1|2|y1|+ |x1||y1|2

)]
Using the basic inequality

x2y + xy2 ≤ x3 + y3, ∀x, y > 0,

and the fact that {
ρ1, ρ2 ≤ ρ,

σ1, σ2 ≤ 1,
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we have for some constant η > 0 that

E

∣∣∣∣∣
∑n

j=1Xj√
n

∣∣∣∣∣
3

≤n−
3
2

[
2C ′nρ+ 2C ′n

3
2 + 6C ′′n

3
2 + 3nE

(
|x1|3 + |y1|3

)]
≤ η(1 +

ρ√
n
).

5.3 Bounds for Dk

Lemma 5.3. For any 0 < ϕ < 1
2 ,

P
(
|D2 − ξ| ≤ n−ϕ

)
= 1− o(1).

Proof. Define 

Xi,j ≜ ai,j1|ai,j |≤n,

µk ≜ EXk
i,j ,

µ∗
k ≜ E |Xi,j |k ,

µ† ≜ E
[
|Xi,j |2Xi,j

]
.

Since all elements in A are i.i.d. and Xi,j ’s are bounded,
these values are well-defined. Note that we only care
about the asymptotic behavior, we assume n ≥ ρ in the
following proof.

Observe that

P(|ai,j | > n) ≤ E |ai,j |3

n3
≤ ρ

n3
,

A satisfies

P
(
∃i, j ∈ [n] : |ai,j | > n

)
≤ ρ

n
.

Therefore,

(5.20)
P(|D2 − ξ| > ε)

≤P

(∣∣∣∣∣
∑n

j=1 (
∑n

i=1Xi,j)
2

n2
− ξ

∣∣∣∣∣ > ε

)
+
ρ

n
.

Next, we bound some moments. For µ1,

|µ1| =
∣∣−E

[
ai,j1{|ai,j |>n}

]∣∣ ≤ E
[
|ai,j |1|ai,j |>n

]
≤E

[
|ai,j | (|ai,j | /n)2

]
≤ ρ

n2
.

For µ2, we first notice that

|ξ − µ2| =
∣∣E [a21,1 − a21,11|a1,1|≤n

]∣∣
=
∣∣E[a21,11|a1,1|>n

]∣∣ ≤ E
[
|a1,1|3 /n

]
= ρ/n.

Plus, n ≥ ρ by assumption. We could then derive

|µ2| ≤ |ξ|+ ρ/n ≤ 1 + ρ/n ≤ 2.

Also, for µ∗
2, µ

∗
4 and µ†,


µ∗
2 =E

[
|ai,j |2 1|ai,j |≤n

]
≤ E

[
|ai,j |2

]
= 1

µ∗
4 =E

[
|ai,j |4 1|ai,j |≤n

]
≤ nE

[
|ai,j |3

]
≤ nρ∣∣µ†∣∣ = ∣∣∣E[|ai,j |2 ai,j1|ai,j |≤n

]∣∣∣ ≤ E |ai,j |3 = ρ.

Let Sj ≜
∑n

i=1Xi,j , S ≜
∑n

j=1(S
2
j − nξ). Since

E |S|2 = Var[S] + |E[S]|2

≤nVar
[
S2
1 − nξ

]
+ n2

∣∣E[S2
1 − nξ

]∣∣2
=nVar

[
S2
1

]
+ n2

∣∣E[S2
1 − nξ

]∣∣2
≤nE

[
S2
1 S̄

2
1

]
+ n2

∣∣E[S2
1 − nξ

]∣∣2 ,
(5.21)

we only need to bound
∣∣E[S2

1 − nξ
]∣∣ and E

[
S2
1 S̄

2
1

]
separately.

For the first part, since n ≥ ρ,

∣∣E[S2
1 − nξ

]∣∣ = ∣∣nµ2 + n(n− 1)µ2
1 − nξ

∣∣
≤ n |µ2 − ξ|+ n(n− 1) |µ1|2 ≤ ρ+ 1.

For the second, consider all five kinds of monomials
in

E
[
S2
1 S

2

1

]
=

∑
i,j,k,l∈[n]

E
[
Xi,1Xj,1Xk,1Xl,1

]
,
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we could expand it as follows.

E
[
S2
1 S

2

1

]
=

n∑
i=1

E
[
X2

iX
2

i

]
+
∑
i̸=j

E
[
XiXjXjXj +XjXiXjXj

+XjXjXiXj +XjXjXjXi

]
+
∑
i<j

E
[
XiXiXjXj +XjXjXiXi + 4XiXjXiXj

]
+

∑
(i,j,k)∈Pn,3, j<k

E
[
2XiXiXjXk + 2XjXkXiXi

+ 4XiXjXiXk + 4XiXkXiXj

]
+

∑
(i,j,k,l)∈Pn,4

E
[
XiXjXkX l

]
= nµ∗

4 + n(n− 1)
(
2µ1µ† + 2µ1µ

†
)

+

(
n

2

)[
2µ2µ2 + 4(µ∗

2)
2
]

+ n

(
n− 1

2

)(
2µ2µ1

2 + 2µ2
1µ2 + 8µ∗

2µ1µ1

)
+ n4µ2

1µ
2
1

≤ nµ∗
4 + 2n2

(
µ1µ† + µ1µ

†
)
+ n2

[
µ2µ2 + 2(µ∗

2)
2
]

+ n3
(
µ2µ1

2 + µ2
1µ2 + 4µ∗

2µ1µ1

)
+ n4 |µ1|4

≤ n2ρ+ 4n2
ρ

n2
· ρ+ n2

(
22 + 2 · 12

)
+ n3

(
2
ρ2

n4
+ 2

ρ2

n4
+ 4 · 1 · ρ

2

n4

)
+ n4

ρ4

n8

≤ 20n2ρ,

where we slightly abuse the notation to use Xi to denote
Xi,1 and use the assumption n ≥ ρ in the last step.
Therefore, by Eq. (5.21), n ≥ ρ ≥ (σ2

1 +σ
2
2)

3/2 = 1, and
Chebyshev’s inequality, we have

P
(∣∣∣∣ Sn2

∣∣∣∣ > ε

)
≤

E
[
SS
]

n4ε2
≤ n× 20n2ρ+ n2(ρ+ 1)2

n4ε2

≤ 20n3ρ+ n24ρ2

n4ε2
≤ 24ρ

nε2
.

Taking ε = n−ϕ with 0 < ϕ < 1
2 and applying

Eq. (5.20), the lemma then follows from
(5.22)
P
(
|D2 − ξ| ≤ n−ϕ

)
≥ 1− ρ

n
− 24ρn2ϕ−1 = 1− o(1).

Lemma 5.4. Fix any positive constant ∆ < 1
6 , it holds

that
P
(
∀ k ≥ 3, |Dk| ≤ n−∆k

)
= 1− o(1).

Proof. The statement is equivalent to the following
bound

P
(
∃ k ≥ 3, |Dk| > n−∆k

)
= o(1).

The left-hand side can be bounded as

P
(
∃ k ≥ 3, |Dk| > n−∆k

)
=P
(
∃ k ≥ 3,

∑n
j=1 |Cj |k

nk/2
> n−∆k

)
=P
(
∃ k ≥ 3,

( n∑
j=1

|Cj |k
)1/k

> n1/2−∆

)

≤P
(( n∑

j=1

|Cj |3
)1/3

> n1/2−∆

)
,

(5.23)

where the last step follows from the well-known decreas-
ing property of the Lp norm,( n∑

j=1

|Cj |k
)1/k

≤
( n∑

j=1

|Cj |3
)1/3

∀ k ≥ 3.

Recall that by Lemma 5.2, there is a constant η > 0,
such that

E|Cj |3 ≤ η

(
1 +

ρ√
n

)
∀ j ∈ [n].

We can continue the bound by Markov’s inequality in
Eq. (5.23) as

P
(
∃ k ≥ 3 : |Dk| > n−∆k

)
≤ nE |Cj |3

n3/2−3∆

≤ η(1 + ρn−1/2)

n1/2−3∆
.

The right-hand side is o(1) for ∆ < 1/6 and this proves
the lemma.

6 Explicit Expression and Upper-bounds of V ′
k

In this section, we solve the recursion of V ′
k utilizing

the well-known “probabilists’ Hermite polynomials” and
establish some bounds of V ′

k which will be used to bound
the difference between Vk and V ′

k in the next section.

6.1 Probabilists’ Hermite Polynomials The
“probabilists’ Hermite polynomials” are given by

Hen(x) = (−1)ne
x2

2
dn

dxn
e−

x2

2 =

(
x− d

dx

)n

· 1
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for n ∈ N. The following explicit expression could then
be derived by solving this equation.

(6.24) Hen(x) = n!

⌊n
2 ⌋∑

k=0

(−1)kxn−2k

k! (n− 2k)! 2k
,

Note that Hen(x) satisfies

Hen(x) =


1, n = 0,

x, n = 1,

xHen−1(x)− (n− 1)Hen−2(x), n ≥ 2.

We can derive a similar recursion for hn(x) ≜ 1
n!Hen(x).

(6.25) hn(x) =


1, n = 0,

x, n = 1,
xhn−1(x)−hn−2(x)

n , n ≥ 2.

The following upper bound on the Hermite polyno-
mials will be useful in later proofs.

Lemma 6.1. For any n ∈ N and any x ∈ C, it holds
that

|hn(x)| ≤ max(1, |x|)n
( n
e2

)−n
2

.

Proof. By the definition of hn(x), we have

|hn(x)| ≤
⌊n

2 ⌋∑
k=0

|x|n−2k

k! (n− 2k)! 2k

≤
⌊n

2 ⌋∑
k=0

|x|n−2k

(
2k

e

)−k (
n− 2k

e

)−n+2k

.

Use ϕ(k) to denote the inverse of the coefficient of the
k-th term of the previous equation,

ϕ(k) ≜
(
2k

e

)k (
n− 2k

e

)n−2k

> 0

for k ∈
[
0, ⌊n

2 ⌋
]
. The derivative of lnϕ(k) is

d

dk
lnϕ(k) = ln(2k)− 2 ln(n− 2k),

showing that the minimum value of ϕ(k) is achieved at

k0 =
n

2
+

1

4
−

√
4n+ 1

4
.

For n ≥ 1, we have{
k0 ≥ n−

√
n

2 ≥ 0,

n− 2k0 ≥
√
n− 1

2 ≥ 0,

and furthermore

ϕ(k) ≥ϕ(k0)

≥
(
n−

√
n

e

)n−
√

n
2
(√

n− 1
2

e

)√
n− 1

2

= e−
n+

√
n−1

2

(
n−

√
n
)n−

√
n

2

(
n−

√
n+

1

4

)√
n
2 − 1

4

>e−
n+

√
n−1

2

(
n−

√
n
)n

2 − 1
4

= e−
n+

√
n−1

2 n
n
2

(
n−

√
n
)− 1

4

(
1− n−

1
2

)n
2

=
(n
e

)n
2

e−
√

n−1
2

(
n−

√
n
)− 1

4

(
1− n−

1
2

)n
2

.

Since
(
1− 1

x

)x is increasing in (1,∞), it holds that for
all n ≥ 4,(

1− n−
1
2

)n
2

=

[(
1− n−

1
2

)√n
]√

n
2

≥
(
1− 1√

4

)√
4·

√
n
2

= 2−
√
n.

Then we can continue the bound on ϕ(k) as

ϕ(k) ≥
(n
e

)n
2

e−
√

n−1
2 × n−

1
4 × 2−

√
n

=
(n
e

)n
2

exp

(
−
√
n− 1

2
− 1

4
lnn−

√
n ln 2

)
.

When n ≥ 25, it holds that

−
√
n− 1

2
− 1

4
lnn−

√
n ln 2 ≥ −n

2
+ lnn,

which implies

(6.26)
ϕ(k) ≥

(n
e

)n
2

exp
(
−n
2
+ lnn

)
= n

( n
e2

)n
2 ≥ n+ 2

2

( n
e2

)n
2

.

Checking the remaining cases by hand, we conclude that

ϕ(k) ≥ n+ 2

2

( n
e2

)n
2

holds for n ∈ N, 0 ≤ k ≤ ⌊n
2 ⌋ with convention that

00 = 1. Thus,

|hn(x)| ≤
⌊n

2 ⌋∑
k=0

|x|n−2k
/ϕ(k)

≤ n+ 2

2
·max(1, |x|)n · 2

n+ 2

( n
e2

)−n
2

= max(1, |x|n)
( n
e2

)−n
2

.
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6.2 Upper-bound of V ′
k Comparing the recursion of

V ′
k in Eq. (3.12) to that of hk(x) from Eq. (6.25), we have

(6.27)

V ′
k =

V k
1

k! if ξ = 0,

V ′
k = ξ

k
2 hk

(
V1√
ξ

)
otherwise.

Lemma 6.1 can be used to establish an upper bound
of V ′

k by using Eq. (6.27).

Lemma 6.2. For all function θ(n) = ω(1), it holds that

P(|V1| ≤ θ) = 1− o(1).

Proof. By the Chebyshev’s inequality, we have

P(|V1| > θ) ≤ Var(V1)

θ2
= o(1).

Lemma 6.3. For any k ∈ N, it holds that

|V ′
k| ≤ max

(
1, |V1|k

)( k

e2

)− k
2

.

Note that k might be larger than n for notation conve-
nience in Eq. (6.28).

Proof. Consider the following two cases depending on
whether ξ = 0 or not.

1. ξ = 0. By definition, we have V ′
k =

V k
1

k! and

|V ′
k| =

|V1|k

k!
≤ |V1|k

(
k

e

)−k

≤ max
(
1, |V1|k

)( k

e2

)− k
2

.

2. ξ ̸= 0. Recall that V ′
k = ξ

k
2 hk

(
V ′
1√
ξ

)
. We can apply

Lemma 6.1 as follows.

|V ′
k| = |ξ|

k
2

∣∣∣∣hk ( V1√
ξ

)∣∣∣∣
≤ |ξ|

k
2 max

(
1,

∣∣∣∣ V1√
ξ

∣∣∣∣)k (
k

e2

)− k
2

≤ max
(
1, |V1|k

)( k

e2

)− k
2

,

where in the final step we used the fact that |ξ| ≤ 1.

Lemma 6.4. Let θ ≜ θ(n) = o( 4
√
lnn) be a function of

n such that θ ≥ 1 and |V1| ≤ θ. Fixing any constant
τ > 0, for sufficiently large n and any k ∈ N, it holds
that

|V ′
k| ≤ nτk−

k
4 .

Additionally, we have the uniform bound

|V ′
k| ≤ e 2 θ2

.

Proof. By Lemma 6.3, we have

|V ′
k| ≤ max

(
1, |V1|k

)( k

e2

)− k
2

.

This together with |V1| ≤ θ implies that, for all k ≥ 0,

|V ′
k| ≤ θk ek k−

k
2 = exp

(
k ln θ + k − k ln k

2

)
= (∗)

Define function

ϕ(x) = θx ex x−
x
4 ,

for x ≥ 0. Calculating the derivative of lnϕ(x), we see
that the maximum value of ϕ(x) is achieved at x = e3 θ4

and

ϕ(x) ≤ ϕ(e3 θ4) = exp

(
e3 θ4

4

)
= no(1),

where in the last step we use the condition θ = o( 4
√
lnn).

Then for sufficiently large n, ϕ(x) is bounded by nτ ,
which means

|V ′
k| ≤ ϕ(k) k−

k
4 ≤ nτk−

k
4 .

For the uniform bound, by calculating the derivative
of (∗) it follows that

|V ′
k| ≤ exp

(
k ln θ + k − k ln k

2

) ∣∣∣∣∣
k=e θ2

= exp

(
e θ2

2

)
< e 2 θ2

.

6.3 Summation of V ′
k In view of the following two

well-known expansion formulas, for any z, t ∈ C,
∞∑
k=0

zk

k!
= ez,

∞∑
k=0

Hek(z)t
k

k!
= ezt−

t2

2 .
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Thus, Eq. (6.27) implies

∞∑
k=0

V ′
kz

k =



∞∑
k=0

V k
1 z

k

k!
= eV1z, ξ = 0

∞∑
k=0

√
ξ
k
Hek

(
V1√
ξ

)
zk

k!
= eV1z− ξz2

2 , ξ ̸= 0

Therefore, in both cases,

(6.28)
∞∑
k=0

V ′
kz

k = eV1z− ξz2

2 .

With help of Lemma 6.4, we prove the following tail
bound.

Lemma 6.5. With all parameters satisfying Eq. (3.4),
with probability 1− o(1),∣∣∣∣∣

∞∑
k=t+1

V ′
k z

k

∣∣∣∣∣ = n−ω(1).

Proof. Applying Lemma 6.2 with θ(n) = ln lnn as in
Eq. (3.4), with probability 1− o(1),

|V1| ≤ θ.

In this case, it follows from Lemma 6.4 that∣∣∣∣∣
∞∑

k=t+1

V ′
kz

k

∣∣∣∣∣ ≤
∞∑

k=t+1

|V ′
k| |z|

k ≤ nτ
∞∑

k=t+1

k−
k
4 |z|k .

As in Eq. (3.4), |z|8 ≤ lnn < t, which means for
sufficiently large n,

(k + 1)−
k+1
4 |z|k+1

k−
k
4 |z|k

=
|z|

4
√
k + 1

(
1 +

1

k

)− k
4

<
|z|
4
√
t
≤ 1

2
.

Thus, ∣∣∣∣∣
∞∑

k=t+1

V ′
kz

k

∣∣∣∣∣ ≤ nτ t−
t
4 |z|t = n−ω(1).

Since |ez| = eRe(z) holds for z ∈ C. Eq. (6.28)
says that the summation is small only if the Re(V ′

1) is
small, which has small probability by concentration of
V1. Formally,

Lemma 6.6. With all parameters satisfying Eq. (3.4),

P
[∣∣∣∣eV1z− ξz2

2

∣∣∣∣ ≥ n−γ

]
= 1− o(1).

Proof. We upper-bound the probability

P
[∣∣∣∣eV1z− ξz2

2

∣∣∣∣ < n−γ

]
=P
[
Re

(
V1z −

ξz2

2

)
< −γ lnn

]
=P
[
Re

(
V1

z

|z|

)
< −γ lnn

|z|
+

Re(ξz2)

2 |z|

]
.

(6.29)

Since |z|8 ≤ lnn, for large n, it holds that

Re(ξz2)

2 |z|
≤
∣∣∣∣ξz22z

∣∣∣∣ ≤ γ lnn

2 |z|
.

Therefore, we can continue Eq. (6.29) as

P
[∣∣∣∣eV1z− ξz2

2

∣∣∣∣ < n−γ

]
≤ P

[
|V1| >

γ lnn

2 |z|

]
,

which is easily shown to be o(1) applying Lemma 6.2.

7 Difference of Vk and V ′
k

In this section, we bound the difference between Vk and
V ′
k. To this end, we simply apply triangle inequality of

absolute values and induction repeatedly.

Lemma 7.1. With θ(n) = ln lnn as in Eq. (3.4), fixing
any positive constant ν < 1

8 , there exists a constant
nk = nk(σ1, σ2, δ, ρ) such that for any n ≥ nk, with
probability 1 − o(1), the difference εk ≜ |V ′

k − Vk| is
bounded by

εk ≤ n−νk−νk

for any 0 ≤ k ≤ n.

Proof. Note that V0 = V ′
0 ≡ 1 and V1 ≡ V ′

1 by
definition. This gives ε0 = ε1 = 0.

For k ≥ 2, recall that
(7.30)

Vk =
Vk−1V1 − Vk−2D2 +

∑k−1
i=2 (−1)iVk−1−iDi+1

k
,

V ′
k =

V ′
k−1V

′
1 − V ′

k−2ξ

k
.

The triangle inequality and the bound |ξ| ≤ 1 as proved
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in Eq. (2.1) then establish the following upper bound

k εk =

∣∣∣∣∣(V ′
k−1V

′
1 − V ′

k−2ξ
)

−
(
Vk−1V1 − Vk−2D2 +

k−1∑
i=2

(−1)iVk−1−iDi+1

)∣∣∣∣∣
≤
∣∣∣V ′

k−1V1 − Vk−1V1 − V ′
k−2ξ + Vk−2ξ

− Vk−2ξ + Vk−2D2

∣∣∣+ k−1∑
i=2

|Vk−1−iDi+1|

≤ |V1| εk−1 + εk−2 + |Vk−2| |D2 − ξ|

+
k−1∑
i=2

|Vk−1−i| |Di+1| .

Therefore, we can bound εk as

εk ≤ 1

k

(
|V1| εk−1 + εk−2

+ εk−2 |D2 − ξ|+
∣∣V ′

k−2

∣∣ |D2 − ξ|

+
k−1∑
i=2

∣∣V ′
k−1−i

∣∣ |Di+1|+
k−1∑
i=2

εk−1−i |Di+1|
)
.

(7.31)

Choose τ and ∆ such that

(7.32)


τ > 0,

∆ > ν,
1
8 < ∆ < 1

6 ,

2τ + ν < 2∆.

Applying Lemma 6.2 with θ(n) = ln lnn as assumed,

P (|V1| ≤ θ) = 1− o(1).

Plus Lemmas 5.3 and 5.4, with probability 1 − o(1), it
holds that

(7.33)


|V ′

1 | ≤ θ,

|D2 − ξ| ≤ n−2∆,

|Dk| ≤ n−k∆.

For the rest of this proof, we assume that Eq. (7.33)
holds. In this case,

εk ≤ 1

k

[
|V ′

1 | εk−1 + εk−2 +
k∑

i=2

(
εk−i +

∣∣V ′
k−i

∣∣)n−∆i
]

≤ 1

k

[
θ(εk−1 + εk−2) +

k−2∑
i=0

(
εi + |V ′

i |
)
n−∆(k−i)

]
.

(7.34)

We prove the claim by considering two cases k ≤
lnn

ln lnn and k > lnn
ln lnn .

We first apply induction for k ≤ lnn
ln lnn . The base

cases for k = 0, 1 holds simply because ε0 = ε1 ≡ 0.
Assume εj < n−νj−νj < 1 holds for any j < k, by the
uniform upper bound on V ′

k proven in Lemma 6.4 and
Eq. (7.34), we have

εk ≤1

k

[
θ(εk−1 + εk−2) +

k∑
i=2

(
εk−i + e 2θ2)

n−∆i
]

≤1

k

[
θ(εk−1 + εk−2) + 2

k∑
i=2

e 2θ2

n−∆i
]

≤θ(εk−1 + εk−2) + 2 e 2θ2

n−2∆.

Define θ′ = 3 e 2θ2

n−2∆. The above equation can be
relaxed as

εk ≤ θ(εk−1 + εk−2) + θ′.

Using an induction on k, it is easy to see that εk ≤
θkθ′3k since θ(n) > 1 for large n. That is, for large n,

εk ≤ 3k+1θke 2θ2

n−2∆ < n−νk−νk

holds since ν < ∆ as in Eq. (7.32).
Now consider the case when k ≥ lnn

ln lnn , and we
will prove by another induction on k. The base case
for k = lnn

ln lnn is proven in the previous case. Assume
εj ≤ n−νj−νj holds for all j < k, we then prove the
bound for j = k as follows.

First, we bound the summation

A ≜
k−2∑
j=0

∣∣V ′
j

∣∣n−∆(k−j)

as

A ≤ nτ
k−2∑
j=0

j−
j
4n−∆(k−j) ≤ nτ−∆k

k−2∑
j=0

j−
j
4n∆j .

Define function ψ(x) = x−
x
4 n∆x. The above equation

can be written as

(7.35) A ≤ nτ−∆k
k−2∑
j=0

ψ(j).

Computing the derivative of lnψ(x), it is easy to see
that ψ(x) is increasing for x ∈

[
0, n

4∆

e

]
and decreasing

for x ∈
[
n4∆

e ,∞
)
. If k − 2 ≤ n4∆

e , Eq. (7.35) can be
bounded as

A ≤nτ−∆k (k − 1)ψ(k − 2)

≤nτ−k∆ (k − 1)(k − 2)−
k−2
4 n(k−2)∆

≤nτ−2∆ k−
k
8

≤n2τ−2∆ k−
k
8 ,
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where the third step holds for sufficiently large n since
k ≥ lnn

ln lnn . Similarly, if k − 2 > n4∆

e , Eq. (7.35) can be
bounded as

A ≤nτ−∆k (k − 1)ψ

(
n4∆

e

)
=nτ−k∆ (k − 1) e

n4∆

4e

≤nτ−2∆ n−(k−2)∆ (k − 1) e
k−2
4

≤nτ−2∆ k−(k−2)∆ (k − 1) e
k−2
4

≤n2τ−2∆ k−
k
8 ,

where the third step holds for the condition k−2 > n4∆

e ,
and the last step holds for sufficiently large n since
∆ > 1

8 as in Eq. (7.32). Combining the above two cases,
the following inequality holds

A ≤ n2τ−2∆k−
k
8 .

Equation (7.34) then implies that
(7.36)

εk ≤ 1

k

[
θ(εk−1+εk−2)+

k−2∑
j=0

εjn
−∆(k−j)+n2τ−2∆k−

k
8

]
.

We bound each term of the summation as follows.
• First,

θ(εk−1 + εk−2)

≤ 2θ n−ν(k − 2)−ν(k−2)

=
1

2
k n−νk−νk · 4θk2ν−1

(
1 +

2

k − 2

)ν(k−2)

≤ 1

2
k n−νk−νk · 4θk2ν−1e2ν

≤ 1

2
k n−νk−νk,

(7.37)

where the final step holds for sufficiently large n
since ν < 1

8 <
1
2 as in assumption.

• Second, since

n−ν−∆(k−j)j−νj

n−ν−∆(k−j−1)(j + 1)−ν(j+1)
= (j + 1)ν

(
1 + 1

j

)νj
n∆

≤ (j + 1)νeν

n∆
<

1

2
,

for sufficiently large n and the choice ν < ∆ in
Eq. (7.32), we have

k−2∑
j=0

εjn
−∆(k−j) ≤

k−2∑
j=0

n−ν−∆(k−j)j−νj

≤ 2n−ν−2∆(k − 2)−ν(k−2).

For sufficiently large n, we have
k−2∑
j=0

εjn
−∆(k−j) ≤ 1

4
k n−νk−νk.

Here we use the fact that ν,∆ > 0.

• Lastly, for large n,

n2τ−2∆k−
k
8 ≤ 1

4
k n−νk−νk

holds because 2∆ > 2τ + ν in Eq. (7.32) and ν < 1
8

in the statement.

Adding the bounds in the above three cases, we have

εk ≤ n−νk−νk.

Then the lemma follows.

Then we use the above bound to prove Eq. (3.13).

Lemma 7.2. With parameters satisfying Eq. (3.4), with
probability 1− o(1),∣∣∣∣∣

t∑
k=0

Vkz
k −

t∑
k=0

V ′
kz

k

∣∣∣∣∣ = O(nc−ν).

Proof. Let M = lnn
ln lnn . Using Lemma 7.1, with

probability 1− o(1),

∣∣∣∣∣
t∑

k=0

εkz
k

∣∣∣∣∣ ≤
M∑
k=0

εk |z|k +
t∑

k=M+1

εk |z|k

≤n−ν
M∑
k=0

|z|k + n−ν
t∑

k=M+1

k−νk |z|k .

(7.38)

For large n,
M∑
k=0

|z|k ≤ 2(lnn)cM ≤ 2nc.

On the other hand, since M = lnn
ln lnn and c < ν as

in Eq. (3.4), it holds for large n that

(k + 1)−ν(k+1) |z|k+1

k−νk |z|k
= (k + 1)−ν |z|

(
1 +

1

k

)−νk

≤ |z|
(M + 1)ν

<
1

2
.

Thus, for large n,

(7.39)
t∑

k=M+1

k−νk |z|k ≤M−νM |z|M ≤ nc,
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which means

(7.40)
t∑

k=0

εk |z|k = O(nc−ν).
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