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Abstract

We prove a few concentration inequalities for the sum of
n binary random variables under weaker conditions than
k-wise independence. Namely, we consider two stan-
dard conditions that are satisfied in many applications:
(a) direct product conditions (b) the XOR condition.
Both conditions are weaker than mutual independence
and both imply strong concentration bounds (similar to
Chernoff-Hoeffding) on the tail probability of the sum of
bounded random variables ([Impagliazzo and Kabanets,
APPROX-RANDOM 10], [Unger, FOCS 09]). Our in-
equalities can be stated as the implication of thresh-
old direct product theorems from either k-wise direct
product conditions, or the k-wise XOR condition. By
proving optimality of our inequalities, we show a clear
separation for k � n between k-wise product conditions
and XOR condition as well as a stark contrast between
k-wise and n-wise product theorems.

We use these bounds in the cryptographic applica-
tion that provides provable security against algorithms
with S-bit advice. Namely, we show how the problem
reduces to proving S-wise direct product theorems or S-
wise XOR lemmas for certain ranges of parameters. Fi-
nally, we derive a new S-wise XOR lemma, which yields
a tight non-uniform bound for length increasing pseudo-
random generators, resolving a 10-year-old open prob-
lem from [De, Trevisan, and Tulsiani, CRYPTO 10].

1 Introduction

Concentration inequalities such as Chernoff [Che52] and
Hoeffding [Hoe63] bounds on the tail probability of the
sums of bounded random variables are important tools
in the design and analysis of many algorithms, security
protocols, and complexity theory. These bounds require
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independence or similar weaker conditions on the ran-
dom variables, e.g., mutual independence in Chernoff-
Hoeffding and k-wise independence in [SSS93]. In fact,
it might not be wrong to say that the major application
of independence condition for a set of random variables
is some sort of concentration inequality.

Different relaxations of independence assumption
in Chernoff-Hoeffding (CH) inequality to weaker con-
ditions are explicitly studied in a few independent lines
of work. One such important relaxation is k-wise in-
dependence. Indeed, Schmidt et al. [SSS93] used sim-
ilar to CH exponential concentration inequality for k-
wise independent random variables to improve perfor-
mance of job scheduling and oblivious packet rout-
ing algorithms, while Bellare and Rompel [BR94] used
concentration inequalities for k-wise independent ran-
dom variables to reduce the number of rounds and
amount of randomness in Arthur-Merlin protocols. An-
other type of important relaxations considers approxi-
mate versions of the characteristic property of the prod-
uct distribution, e.g., such as direct product condition
Pr[

∧
i∈I Xi = 1] =

∏
i∈I Pr[Xi = 1] that is equiva-

lent to mutual independence for binary random vari-
ables. These relaxations are needed in complexity the-
ory for the tasks of hardness amplification (Direct Prod-
uct Theorems) and are used, for example, in the crypto-
graphic application CAPTCHA. In particular, Impagli-
azzo and Kabanets [IK10] show that CH type bounds
corresponds to threshold direct product theorem and
can be obtained from the approximate product condi-
tion ∀I ⊆ [n]Pr[

∧
i∈I Xi = 1] ≤ δ|I| for some δ < 1.

Similarly, in an earlier paper Unger [Ung09] showed
that CH bound follows from a weaker than indepen-
dence condition on the co-moments, i.e., a bound on
the bias of XORs for any subset of random variables
∀I ⊆ [n] Bias(⊕i∈I Xi) ≤ β|I|. The condition that can
be verified in many application domains by using vari-
ous XOR lemmas.

These relaxation can be roughly divided into two
trends: k-wise independence and approximation, both
trends having good motivation and practical signifi-
cance.
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Motivation for k-wise independence. Expo-
nential concentration bounds show their true power only
on the instances with large number n of random vari-
ables, i.e., they apply only to high-dimensional joint dis-
tributions. The mutual independence condition imposes
strong requirements on the joint distribution and often
is too difficult to achieve in practice. The k-wise re-
laxation for k much smaller than n allows to mitigate
these requirements. For example, a basic task of test-
ing whether n-dimensional distribution is k-wise inde-
pendent has computational and sample complexity of
nO(k) [AAK+07] for fixed k. I.e., it is effectively impos-
sible to test if many variables are mutually independent,
while it is still manageable to test k-wise independence
for small k.

Constructing a high-dimensional product distribu-
tion is quite costly, as it has high entropy and requires
Ω (n) random bits. Thus k-wise distributions are more
common in applications such as hashing and pseudo ran-
dom generators. Indeed, there are many constructions
for k-wise independent distributions that utilize signifi-
cantly lower amount of randomness.

Motivation for approximation. Mutual inde-
pendence and k-wise independence of random variables
are often idealistic abstractions that only approximately
capture reality. It is especially true in complexity theory
and cryptographic applications, where many primitives
entail certain margin for errors. For example, the di-
rect product theorems (e.g., [Imp95]) and XOR lemmas
(Yao’s XOR Lemma, Vazirani’s Parity Lemma [Vaz87],
or Unger’s XOR lemma [Ung09]) mentioned earlier use
approximate bounds. These statements allow to am-
plify hardness of many cryptographic constructions and
thereby achieve better security guarantees (see, e.g.,
[MT09]). These approximation results are especially
useful in practice when they require only local condi-
tions, i.e., when they hold only for small subsets of vari-
ables similar to k-wise independence (e.g., [Imp95]).

Motivation for k-wise approximation. Inter-
estingly, our initial motivation for studying k-wise ap-
proximation comes from a fundamental and challeng-
ing problem in a seeming unrelated context — proving
tight non-uniform security bounds for one of the basic
cryptographic primitives — pseudorandom generators
(PRGs). Along the way, we discover a fruitful connec-
tion between concentration bounds for k-wise approxi-
mations and analysis techniques for non-uniform secu-
rity, illustrated below.

Cryptography usually models the attacker as non-
uniform, meaning he can obtain an arbitrary (but
bounded) advice before attacking the system. Specif-
ically, a non-uniform PRG attacker A for a length in-

creasing function O : [N ] → [2N ] consists of an offline
algorithm A1 and an online algorithm A2. In the pre-
processing stage, A1 makes arbitrary number of queries
to O and produces S bits of advice. Then A2 uses the
advice and makes T queries to distinguish whether a
given y is a random image of O, or a uniform random
string from [2N ].

De, Trevisan, and Tulsiani [DTT10] showed that
an attacker with an S-bit advice and T = O(1) queries,
can achieve advantage Ω(

√
S/N) for any given O. In

addition, they gave an O(
√
ST/N) upper bound on the

advantage, even for the attacks in a special case of O =
(f, P ) where f : [N ] → [N ] is a random permutation,
and P : [N ] → {0, 1} is a random predicate. Recently,
Dodis, Guo and Katz [DGK17], Coretti, Dodis, Guo,
and Steignberger [CDGS18] proved the same security
bound (i.e., the upper bound on the advantage) for the
special case of a random function O.

These security bounds only match the attack by
De et al. in the extremal case of T = O(1), i.e.,
only for a constant number of queries. De et al. left
an intriguing open question of what parameters’ range
can lead to distinguishability despite that inversion
of one-way permutations or functions is impossible.
Specifically, is the advantage Ω(

√
T/N) achievable for

S = O(1)?
Surprisingly, even for the extremal case of S = 1,

there has been no progress on either attacks, or security
bounds in the past decade. One difficulty in obtain-
ing tight non-uniform security is the lack of applicable
techniques. Unlike the uniform setting (i.e., no advice is
allowed), there are only two major techniques, imcom-
pressibility argument [DTT10, DGK17, CK18] and the
presampling technique [Unr07, CDGS18, CDG18] in the
non-uniform setting. Both of them fail to obtain better
security bounds for the PRG problem.

Do we have other techniques? An elegant and short
proof for tight non-uniform security of the one way
permutation (OWP) problem by Impagliazzo [Imp11]
is one such example1. Moreover, this proof has a strong
concentration bound flavor. In particular, Impagliazzo
showed that, any adversary without advice can achieve
advantage ε (i.e., invert at least ε fraction of points
in [N ]), for at most 2−S/N fraction of a random
permutation f : [N ] → [N ] (for some parameters
0 < ε < 1). Then, by a simple union bound, any
adversary with S-bit advice can achieve advantage ε
for at most 1/N fraction of a random permutation.
Therefore, any adversary with S-bit advice achieves at
most ε+ 1/N ≈ ε (ε usually dominates 1/N) advantage

1The proof is included in the appendix [Imp11] and stated for
random injective functions.
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for a random permutation
It is somewhat surprising that the simple idea of

union bound works so nicely. It reduces the task from
showing security for attackers with S-bit advice, to
showing a roughly 2−S concentration bound on the ad-
vantages for attackers with no advice. Another useful
insight from [Imp11] is that, for any choice of permuta-
tion f , the advantage of a OWP attacker can be written
as an average of {0, 1} variables X1, . . . , XN where Xi

indicates whether the attacker succeeds in inverting i
(i.e., outputting f−1(i)). Using this language, Impagli-
azzo [Imp11] showed that X1 + · · ·+XN ≥ εN happens
with probability at most 2−S/N over the randomness of
f .

How to prove such concentration bounds for
X1, . . . , XN? No independence condition is guaranteed.
Impagliazzo [Imp11] showed that those variables satisfy
the following condition, for every subset I ⊆ [N ] of size
k, Pr[Πi∈IXi = 1] ≤ (6kT/N)k, which does not give N -
wise approximation because the inside factor becomes
worse when size of I grows and becomes trivial when
|I| ≥ N/6T . By using above condition for sets of size
(S + logN), Impagliazzo [Imp11] showed the desired
concentration bounds, which yield a tight non-uniform
security bounds for one-way permutations.

The proof strategy of Impagliazzo [Imp11] can be
adapted to general cryptographic applications. The
success probability of any (deterministic) attacker is
typically captured by the fraction of solved challenges
among N possible challenges, which can be written
as the averaging of X1, . . . , XN where X1, . . . , XN are
{0, 1} variables indicating whether A succeeds in the
i-th challenge. Hence, proving non-uniform security
bounds reduces to proving 2−S/N concentration bounds
for the event of X1 + · · ·+XN ≥ εN .

We employ similar to [Imp11] proof strategy to
an equivalent variant of PRG problem, called hard-
core predicate problem. We obtain corresponding
X1, . . . , XN variables and observe that they satisfy
a variety of approximate conditions including (1/2 −
6kT/N)k ≤ Pr[Πi∈IXi = 1] ≤ (1/2 + 6kT/N)k and
more. To prove the tight bound, we would need a tail
bound as strong as for perfect k-wise independent vari-
ables X1, . . . , XN . This motivates us to study k-wise ap-
proximation notions with strong concentration bounds.

In this paper we investigate the power of different
approximation notions for k-wise independence. Our
goal is to find conditions that (i) yield exponential
concentration inequalities similar to CH bounds (ii) hold
in various cryptographic application. In particular, we
compare to the concentration bound for the exact k-
wise independence of Schmidt et al. [SSS93] (Theorem 5

case I.(a)): if X = X1 + . . .+Xn are k-wise independent
{0, 1} random variables with E[Xi] = 1/2, then Pr[|X−
n/2| > O(

√
kn)] ≤ e−bk/2c. As discussed above, we

are explicitly interested in the application of proving
tight non-uniform security bounds for PseudoRandom
Generators (PRGs).

1.1 Our results The first part of our results is
dedicated to finding a good notion of approximation for
the k-wise independence condition on a set of n random
variables. Our goal is to identify a condition that can
be verified in the wide range of applications and would
imply a strong enough concentration, i.e., similar to CH
a bound which is exponential in n and k. To this end,
we do a “case study” on the most basic setting with
n binary random variables X1, . . . , Xn with values in
{0, 1}. As our motivation comes from cryptographic
applications, we take a special interest in the unbiased
case when Pr[Xi = 1] is close to 1/2, but we consider
other regimes as well.

An obvious candidate for the approximation of
k-wise independence is the direct product condition
(corresponds to direct product theorems) that a|I| ≤
Pr[Πi∈IXi = 1] ≤ b|I| for any subset I of size at
most k of n variables and some a < b < 1. We
would like to bound the probability that the average
value is larger than c > b: Pr[

∑n
i=1Xi > cn]. One

of the most common regimes of parameters would be
a = (1 − ε)/2, b = (1 + ε)/2, and c = (1 + γ)/2
where γ > 2ε (ideally, ε, γ = o(1) decrease with n).
We also consider the one-sided version of the product
condition, as in some applications it is easier to care only
about one side of the inequality in the direct product
condition, namely that Pr[Πi∈IXi = 1] ≤ b|I|. Finally,
we look at the k-wise XOR condition (similar in spirit
to [Ung09]) corresponding to XOR lemmas, where the
XOR of {Xi}i∈I in any subset I of size at most k satisfies
Pr[⊕i∈I Xi = 1]−Pr[⊕i∈I Xi = 0] ≤ ε|I|.

Let X1, . . . , Xn be {0, 1} random variables and X =
X1 + . . . + Xn. For different approximation conditions
on k-wise independence we have

One-sided direct product. A tight upper bound on

Pr[X > c · n] of order ≈
(
b
c

)k
in Theorem 3.1.

This is rather weak bound. As an example, to com-
pare it to the bound for exact k-wise independent
condition, we set b = 1/2, c = 1/2 + O(

√
k/n).

Then instead of e−bk/2c, we get the bound of
(1−O(

√
k/n))k = 1− o(1) for k = o(n1/3).

Two-sided direct product. This condition is a
proper approximation to k-wise independence
for binary random variables, as it coincides with
k-wise independence when a = b. If a = b, the

Copyright © 2021 by SIAM
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results of Schmidt et al. [SSS93] imply a e−bk/2c

bound. An important question is how the bound
degrades with the approximation depending on
the gap between a and b.

1. First, we derive a succinctly represented LP
and its dual (Lemma 3.1), that describes tight
bounds on the tail probability. The LP can be
generalized to a broader set of approximate
product type conditions.

2. We apply these LPs to two-sided (a, b)-
product condition and derive almost tight
bounds in Theorem 3.2 for the approximation
gap as small as b − a > k/n. 2 In particular,
when compared to the bound in [SSS93], The-
orem 3.2 implies that Pr[X > c ·n] may be as
large as Ω(1/k) � e−Ω(k), for a = 1/2− k/n,
b = 1/2 + k/n, and c = 1/2 +O(

√
k/n).

XOR condition. We show in Theorem 3.3 that XOR
condition gives the following tail bound

Pr

[
n∑
i=1

Xi ≥
n(1 + γ)

2

]
≤

ε+
√

k
n

γ

k

.

Note that this bound matches the bound of [SSS93]
for unbiased variables, when approximation error
ε = 0. In a stark contrast to approximate k-
wise direct product condition, this bound is of
order e−Ω(k) in the interesting regime γ > 2ε and
γ = Ω(

√
k/n), i.e., for the same deviation from the

mean as in [SSS93] and approximation error within
a constant factor from the deviation’s threshold.

For completeness, we consider a generalized version
of the XOR condition for the collection of arbitrary
bounded random variables. We show a similar to
Theorem 3.3 result Theorem B.1 in Appendix B.

2The approximation gap of b − a < k/n is really small.
To see this, consider any k-wise independent distribution of
Y = (Y1, . . . , Yn) binary random variables with E[Yi] = a,
where a < 1/2. Consider a modified random variable Y+, in
which we independently set Y +

i = 1 with probability 2k/n and

Y +
i = Yi otherwise for each i ∈ [n]. Both distributions Y+ =

(Y +
1 , . . . , Y +

1 ) and Y are k-wise independent, with Pr[
∏

i∈I Yi =

1] = a|I| and Pr[
∏

i∈I Y
+
i ] > (a + k/n)|I| for any subset I of

size at most k. I.e., Y+ is above the threshold and Y is exactly
at its lower side for any set of I variables in k-wise (a, b)-product
condition, if b− a < k/n. On the other hand, we have changed in
expectation at most 2k variables in Y to get Y+. In fact, when
k = o(n), the probability that we have changed more than 4k
random variables is less than Pr[Poisson(2k) > 4k] = e−Ω(k).

It should not be too surprising that the one-sided ver-
sion of the k-wise direct product condition does not im-
ply good concentration. It is interesting that the two-
sided (a, b)-approximation of the k-wise independence
suffers from a similar problem for any reasonable ap-
proximation error (b−a > k/n). This is surprising in the
light of Impagliazzo and Kabanets [IK10] results, who
showed that the approximate direct product condition
for n-wise (mutual) independence implies CH bound.
On the other hand, the k-wise XOR condition does yield
the desired tail bound for all values of k. Thus our
bounds effectively dismiss the approximation of k-wise
independence via the direct product condition (unless
the approximation error is very small), and show that
k-wise XOR condition is most useful for small k.

Related works on almost k-wise indepen-
dence. There are other notions of almost k-wise in-
dependence in the literature. Naor and Naor [NN93]
define k-wise ε-biased variables, which requires the bias
of every subset I of size ≤ k to be at most ε (instead of
ε|I| in the XOR condition), and provide a concentration
bound with this assumption. Alon et al. [AGHP92] de-
fine almost k-wise independent variables to be for every
subset I of size ≤ k, |Pr[

∏
i∈I Xi = 1]−a|I|| ≤ ε. Under

this assumption, Kabanets [Kab03] proves a bound on
Pr[Xi = 1 ∀i]. Both of the bounds cannot be compared
directly to our works.

Assuming the one-sided direct product condition,
techniques in multiple works [SSS93, IK10, LL14, PR17]
are able to give the concentration bound in Theorem 3.1.
Our work provides also a matching example to show
that the bound is tight.

Non-uniform security of PRGs. In our second
set of results, we focus on the application of our
concentration inequalities for k-wise XOR condition to
non-uniform security in pseudorandom generators. We
obtain the following security guarantee. The notation
Õ (·) hides factors that are polynomial in logN .

Theorem 1.1. (Pseudorandom Generators)
Let P : [N ] → {0, 1} be a random function and
f : [N ] → [N ] be a random permutation. For any pair
of algorithms A1,A2 that A1 outputs an S-bit advice
(S ≥ 1) with oracle access to O := (f, P ) and A2 makes
T adaptive oracle queries to O, it holds that∣∣∣Pr

[
AO2 (AO1 ,O(x)) = 1

]
−Pr

[
AO2 (AO1 , u) = 1

] ∣∣∣
= Õ

(
ST

N
+

√
S

N

)
,

where x is uniformly drawn from [N ], and u is uniformly
drawn from [N ]× {0, 1}.
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Our results answer the open question posed by De
et al. In particular, The above theorem shows that
the advantage of order Ω(

√
T/N) is not achievable for

S = O(1). Moreover, it strictly improves the result by
De et al., and shows optimality of the best known attack
for anyO of the form (f, P ), due to combining Hellman’s
permutation inversion algorithm [Hel80] and the attack
by De et al. In particular, Hellman’s permutation
inversion algorithm inverts any permutation f on ST/N
fraction of points. This algorithm yields a natural
distinguisher with advantage ST/N (by inverting x and
then comparing P (x) with the last bit of the given
y). When combined with the

√
S/N attack by De

et al., a non-uniform attacker achieves advantage of
Ω(ST/N +

√
S/N).

Our results trivially imply the same security bound
for attacking a worst case O, which is tight up to the
additive term ST/N , for all range of parameters. For
ST 2 ≤ N , in which case

√
S/N term dominates ST/N ,

our bound suggests that the attack from De et al. is
the best possible. Strengthening ST/N term, which
corresponds to the security bound for function inversion,
is a long standing open problem. Corrigan-Gibbs and
Kogan [CK19] showed that any improvement of this
bound will give new lower bounds for depth two circuits
with arbitrary gates, and strong improvements would
imply breakthrough circuit lower bounds on linear-size
log-depth circuits.

We prove our main result by establishing the same
(and tight) non-uniform security bounds for hardcore
predicates.

Theorem 1.2. (Hard-core Predicates) Let P :
[N ] → {0, 1} be a random function and f : [N ] → [N ]
be a random permutation. For any oracle algorithms
A1,A2, such that A1 outputs an S-bit advice (S ≥ 1),
and A2 makes T queries, it holds that

Pr
[
AO2 (AO1 , f(x)) = P (x)

]
=

1

2
+ Õ

(
ST

N
+

√
S

N

)
,

where x is uniformly drawn from [N ], and O = (f, P ).

Lastly, we present a new attack for Yao’s box
problem, matching the known Ω(

√
ST/N) security

bound due to De et al. [DTT10].

Theorem 1.3. (Yao’s Box Problem) Let
P : [N ] → {0, 1} be a random function. There
exist oracle algorithms A1,A2, that A1 outputs an S-bit
advice, and A2 makes T queries without querying the
given input x, such that

Pr
[
AP2 (AP1 , x) = P (x)

]
=

1

2
+ Ω

(√
ST

N

)
.

where x is uniformly drawn from [N ].

Yao’s box problem has been used as an intermediate
problem, which yields an upper bound on non-uniform
bounds of hardcore predicates and pseudorandom gen-
erators [DTT10, DGK17]. Similar formulations of such
problem are recently studied in the context of circuit
complexity [ST18, MW19], which led to a new result on
depth-3 circuits.

An attack with perfect advantage was known for
the special case S(T + 1) = N [Yao90]. Our new
attack works for the general case, and is tight (up to
constant factors) for all range of parameters. Combining
Theorem 1.3 and Theorem 1.2, we obtain an interesting
separation between the non-uniform security of Yao’s
box problem and hardcore predicates.

A general approach for proving non-uniform
security. Our proof in Section 4.1 for establishing
non-uniform security of hardcore predicates (see Theo-
rem 1.2) is elementary given our concentration inequal-
ities for the XOR condition (see Theorem 3.3). We find
it conceptually simpler to abstract our proof and tech-
niques in following modular way, which may be use-
ful for proving non-uniform security for other crypto-
graphic problems. We abstract our approach and pro-
vide a proof of Theorem 1.2 under this abstraction in
Appendix 5.

Based on our concentration inequalities, we provide
a general approach for proving non-uniform security.
Informally, it reduces proving non-uniform security of
cryptographic applications against S-bit advice to S-
wise direct product theorems or S-wise XOR lemmas of
a given problem.

Lemma 1.1. (Informal) Let G be a problem with in-
stance space [N ] (or a cryptographic application with
challenge space [N ]).

1. For a search problem G (or an unpredictability
cryptographic application), if its k-wise direct prod-
uct problem is εk-secure against attackers with zero-
advice and Tk-query for any k ≤ S+logN , then G
is ε′-secure against attacker with S-bit advice and
T -query, where ε′ = 6ε+ Õ

(
S
N

)
.

2. For a decision problem G (or an indistinguishability
cryptographic application), if its k-wise XOR prob-
lem is εk-secure against attackers with zero-advice
and Tk-query, for any k ≤ S + logN , then G is
ε′-secure against attacker with S-bit advice and T -

query, where ε′ = 2ε+ Õ
(√

S
N

)
.

The formal statement of Lemma 1.1 (together with
definition of product and xor problem) is given in Sec-

Copyright © 2021 by SIAM
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tion 5. An example of search problem is inverting one-
way permutation. An example of decision problem is
to distinguish the output of a pseudorandom generator
from a random string.

A major difficulty in analyzing non-uniform security
is that most standard techniques are developed for zero-
advice attackers, and do not hold when preprocessing
is allowed. The above lemma reduces the problem to
proving the security against attackers with no advice,
which is considered to be much simpler task, because
standard techniques are applicable again.

A nice feature of Lemma 1.1 is that the blow up
from ε to ε′ is almost the best we can hope for. The
multiplicative factor of ε is a small constant. The ad-
ditive terms of S/N and

√
S/N are necessary in such

a general statement3, and are often dominated by ε.
The small blow up feature is appealing and crucial for
bypassing barriers of previous techniques (incompress-
ibility argument [DTT10, DGK17, CK18], and the pre-
sampling technique [Unr07, CDGS18, CDG18]).

We remark that the first item of Lemma 1.1 has
been implicitly used in the prior work of Impagli-
azzo [Imp11] for proving tight non-uniform security of
one-way permutations. We don’t use it for our main re-
sult and only include it for illustration purpose. Very re-
cently, its power has been recognized and used to prove
tight bounds for several unpredictable cryptographic ap-
plications, including finding short collisions in Merkle-
Damg̊ard hash functions [ACDW20], and function in-
version against affine non-adaptive decoders [CHM20].
In addition, it recently has been generalized to the quan-
tum advice setting and yields tight quantum time-space
tradeoffs for the function inversion problem [CGLQ20].
Presampling and incompressibility arguments are stuck
in proving tight bounds for these problems, and are dif-
ficult to be generalized to the quantum advice setting.

We consider the second item as the main contribu-
tion of Lemma 1.1. Although product condition gives
optimal bounds for search problems, attempts of us-
ing product condition only yield sub-optimal bounds
for decision problems. Our main conceptual contribu-
tion is showing inherent limitations of product condi-
tions and putting forward a strictly stronger condition
(the XOR condition) for decision problems. Besides the
PRG problem, we believe that this approach has a great
potential to close the gap for other fundamental prob-
lems such as the decisional Diffie Hellman (DDH) 4, and

3There are (many) examples of search problems (such as
function inversion) for which ε′ = Ω̃(S/N) by storing answers
for S instances. There are examples of decision problems (such
as distinguishing PRGs) for which ε′ = Ω(

√
S/N).

4The known upper bound on the advantage of non-uniform

attackers is Õ
(√

ST 2/N
)

and the lower bound is Ω̃(ST 2/N)

to be generalized to the quantum advice setting using
the machinery of [CGLQ20].

We remark that the reliance on XOR, as opposed
to AND, is indeed the “natural” thing to do when
capturing multi-instance security of indistinguishability
based notions. This was argued in the work of Bellare et
al. [BRT12], and was recently used in work by Auerbach
et al. [AGK20]. Our work shows this in a technical
sense.

Based on the second item of Lemma 1.1, Theo-
rem 1.2 immediately follows from an XOR lemma for
hardcore predicates (see Lemma 4.1), which says k-
wise XOR problem of hardcore predicates is (6kT/N)k-
secure against attackers with zero advice and Tk
queries.

2 Preliminaries

We use [n] to denote the set {1, . . . , n}. Let X =
(X1, . . . , Xn) be n binary (Xi ∈ {0, 1}) random vari-
ables. We consider the following notions of approxima-
tion for the k-wise independence of X.

Definition 2.1. (One-sided product) X1, . . . , Xn

satisfy b-product condition for b > 0 if,

∀I ⊆ [n], s.t. |I| ≤ k Pr [Πi∈IXi = 1] ≤ b|I|.

Definition 2.2. (Two-sided product) X1, . . . , Xn

satisfy (a, b)-product condition for b > a > 0 if,

∀I ⊆ [n], s.t. |I| ≤ k a|I| ≤ Pr [Πi∈IXi = 1] ≤ b|I|.

Definition 2.3. (XOR) X1, . . . , Xn satisfy ε-XOR
condition for ε > 0 if, ∀I ⊆ [n], s.t. |I| ≤ k

Bias(⊕
i∈I

Xi)
def
= Pr

[
⊕
i∈I

Xi = 1

]
−Pr

[
⊕
i∈I

Xi = 0

]
≤ ε|I|.

We also consider average versions of these conditions: if
for a random set I ⊆ [n] of a given size |I| = t and for
each t ≤ k

EI,X [Πi∈IXi = 1] ≤ bt, or

at ≤ EI,X [Πi∈IXi = 1] ≤ bt, or

EI,X [Bias(⊕i∈I Xi)] ≤ εt,

then we say that X satisfies average- b-product, or (a, b)-
product, or ε-XOR condition5, respectively.

(see [CK18]).
5We remark that our notion of bias is defined as the “bias”

of a {0, 1} variable towards 1 instead of 0, as considered in
[Ung09, IK10]. These two notions are exchangable after switching
0 and 1. We choose this one because it better connects with the
advantage of attackers against indistinguishability applications.
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3 Concentration bounds for almost k-wise
independence

In this section, we consider approximate notion of k-
wise independence, and prove various concentration in-
equality for the sum of approximate k-wise independent
variables. In Subsection 3.1, we give the weakest con-
centration bound under one-sided b-product condition
(see Definition 2.1). We give a simple proof and show
that this weak tail bound is tight. Next, we consider a
stronger two-sided (a, b)-product condition (see Defini-
tion 2.2). The previous approach for one-sided product
condition does not naturally extend. In Subsection 3.2,
we show that exact tail bounds on sum of approximate k-
wise independent variables are captured by primal and
dual linear programs. The approach of analyzing LPs
gives a unified way to obtain tight bounds for product
conditions, and more generally any conditions that can
be “symmetrized”. In Subsection 3.3, we obtain tight
bounds for two-sided product condition using this ap-
proach for a large range of parameters. Finally in Sub-
section 3.4, we derive our strongest concentration bound
under the xor condition, which turns out to be strong
enough for our application that we discuss in Section 4.

3.1 One-sided Product Condition We obtain the
following concentration inequality theorem for the one-
sided product condition.

Theorem 3.1. Let X1, . . . , Xn be {0, 1} random vari-
ables such that for any set I ⊆ [n] of size at most k,
Pr[Πi∈IXi = 1] ≤ b|I|. Then for c ≥ 0,

(3.1) Pr

[
n∑
i=1

Xi ≥ c · n

]
≤ min

0≤i≤k

(
bi
(
n
i

)(
cn
i

) ) .

Moreover, the bound (3.1) holds for average b-product
condition, and is tight.

Theorem 3.1 captures the exact tail bound for all
range of parameters. The upper bound is at most

(b/c)k ≈ bk(nk)
(cnk )

for a large range of parameters. It is

interesting to check two regimes of parameters. First,
when b is close to 0 and we are interested in multiplica-
tive tail bound, i.e., c = C · b for a large constant C.
Theorem 3.1 implies that the tail bound is exp(−Ω(k))
for any C > e. Second, when b is close to 1/2, and we
want to get dependency on the additive error in the tail
bound, i.e., c = b+ γ for a small constant γ > 0. Theo-
rem 3.1 implies that the tail bound is exp(−Ω(γk)).

Proof. Our proof resembles in many ways the proof from
Impagliazzo and Kabanets [IK10], that gave concen-
tration bounds given product conditions for arbitrary

subsets (not only those of size at most k). We de-

note pi
def
= bi ·

(
n
i

)
/
(
cn
i

)
and let t be the minimizer for

p0, . . . , pk. Let I be a random subset of size t. Let

ξ(X)
def
= EI [Πi∈IXi = 1]. By the b-product condition,

(3.2) EX [ξ(X)] = EI [EX [Πi∈IXi = 1]] ≤ bt .

On the other hand, if we condition on the event that X
has at least c ·n coordinates equal to 1, then such an X
has at least of

(
cn
t

)
size-t subsets I such that Πi∈IXi is

1. Therefore,

EI,X

[
Πi∈IXi = 1

∣∣∣∣∣
n∑
i=1

Xi ≥ cn

]
≥
(
cn
t

)(
n
t

) .

Because Πi∈IXi is a non-negative random variable, we
have that

Pr

[
n∑
i=1

Xi ≥ cn

]
≤ E[Πi∈IXi = 1]

E[Πi∈IXi = 1
∣∣∑n

i=1Xi ≥ cn]

≤
bt
(
n
t

)(
cn
t

) = pt .

The desired upper bound follows. Because average-b-
product condition also implies (3.2), the same proof
extends to variables satisfying average-b-product con-
dition.

To show pt is attainable, consider distribution X =
(X1, . . . , Xn) which outputs 0n with probability 1− pt,
and outputs a uniformly random string from strings
with exactly cn ones with probability pt. Notice that
pt is exactly the probability that X has more than cn
ones, i.e.,

Pr

[
n∑
i=1

Xi ≥ cn

]
= pt .

It remains to show that for any I of size i ≤ k, the
product condition holds.

Pr [Πi∈IXi = 1] =
pt(
n
cn

) ·( n− i
cn− i

)
= pt·

(
cn
i

)(
n
i

) = pt·
bi

pi
≤ bi

where the second equality is because of binomial coef-
ficient identity

(
n−i
cn−i

)(
n
i

)
=
(
n
cn

)(
cn
i

)
, the third equality

is by definition of pi, and the last inequality is because
pt ≤ pi for 0 ≤ i ≤ k.

Remark 3.1. Theorem 3.1 can be extended to [0, 1]-
valued random variables Y1, . . . , Yn by reducing to {0, 1}
variables X1, . . . , Xn where Xi = 1 with probability
E[Yi].
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3.2 An LP Approach to Product Conditions
In the previous subsection, we characterized the tail
bounds when only the upper bounds for the products of
small subsets are given. A natural question is what can
be done if we also have lower bounds on these products.
Can we still characterize the exact tail bounds in this
case? Note that in the case when the lower and upper
bounds coincide, i.e., a = b, the distribution of X must
be exactly k-wise independent, which implies strong
concentration bounds [SSS93].

One difficulty in analyzing two sided product con-
dition is that the proof of Theorem 3.1 does not extend
naturally. In this subsection, we prove the following
lemma, which proposes a unified approach for studying
product conditions based on linear programs.

Definition 3.1. For any set of parameter 1 > c > b >
a > 0, let

pa,b,c
def
= max

D
Pr
X∼D

[
n∑
i=1

Xi ≥ cn

]
s.t. a|I| ≤ Pr [Πi∈IXi = 1] ≤ b|I| ∀I ⊆ [n], |I| ≤ k .

Lemma 3.1. pa,b,c is the objective value of following two
programs.

obj = max
∑
j≥cn

(
n

j

)
xj primal

s.t.

n∑
j=0

−
(
n− i
j − i

)
xj ≤ −ai i ∈ [0, k] (λi)

n∑
j=0

(
n− i
j − i

)
xj ≤ bi i ∈ [0, k] (λi)

xj ≥ 0 for j ∈ [0, n].

obj = min
k∑
i=0

(λib
i − λiai) dual

s.t.

k∑
i=0

(
n− i
j − i

)
(λi − λi) ≥

(
n

j

)
j ≥ cn

k∑
i=0

(
n− i
j − i

)
(λi − λi) ≥ 0 j < cn

λi ≥ 0, λi ≥ 0 i ∈ [0, k].

By convention we assume
(
n
i

)
= 0 for i < 0.

The objective values of the LPs in Lemma 3.1 capture
the best bound achievable on the tail probability. By
proposing feasible solutions to the primal and dual LPs,

we respectively obtain lower and upper bounds on the
tail probabilities.

Proof. We first show that we can focus on sym-
metric distributions for X. Given a random vari-
able (X1, . . . , Xn) = X ∼ D we construct a sym-

metric random variable Y: Y = (Y1, . . . , Yn)
def
=

(Xσ(1), . . . , Xσ(n)) where we choose uniformly at ran-
dom a permutation σ ∼ [n!] and draw X ∼ D. Let

pS
def
= Pr[Xi = 1 ∀i ∈ S, Xi = 0 ∀i 6∈ S] for any

S ⊆ [n]. Then for any S ⊆ [n] we have

Pr [Yi = 1 ∀i ∈ S, Yi = 0 ∀i 6∈ S] =
1

n!

∑
σ∈[n!]

pσ(S)

=
|S|! · (n− |S|)!

n!

∑
T⊆[n],
|T |=|S|

pσ(T )

is the same for all sets S of the same size. Thus Y has a
symmetric distribution. Moreover, for any S ⊆ [n] such
that |S| ≤ k, we have

Pr

[∏
i∈S

Yi = 1

]
= E

σ

[
Pr

[∏
i∈S

Xσ(i) = 1

]]
∈ [a|S|, b|S|],

because the probability term inside the expectation is
in the interval [a|S|, b|S|] by (a, b)-product condition.

Hence, to prove the tail bound for almost k-wise in-
dependent random variables, it suffices to only consider
symmetrized instances. From now on, we shall assume
that distribution of X is symmetric. To characterize a
symmetric distribution, it suffices to specify

xj = pS = Pr [Xi = 1 ∀i ∈ S,Xi = 0 ∀i 6∈ S] ,

for any |S| = j and j = 0, 1, . . . , n.
The (a, b)-product criteria can be written as a set

of linear constraints in (xj)
n
j=0. Specifically, if we fix

set S of size ` ≤ k and write Pr[
∏
i∈S Xi = 1] as a

combination of xj , we get

a` ≤
n∑
j=0

(
n− `
j − `

)
xj ≤ b`.

Hence we obtain the first linear program for the tail
bound. By taking the dual, we obtain the second linear
program. By LP duality theorem, both linear programs
have the same objective value. Note that these linear
programs give the exact tail bound.

Observe that the case a = 0 corresponds to one-
sided product condition, Lemma 3.1 provides an alter-
native approach for proving Theorem 3.1. Most impor-
tantly for us, Lemma 3.1 allows to reason about tight-
ness of the concentration bounds for the (a, b)-product
condition.
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3.3 Two-sided Product Condition In this subsec-
tion, we provide a tight analysis for the product condi-
tion when n� k.

Theorem 3.2. We assume that X are n binary random
variables that satisfy (a, b)-product approximate k-wise
independent condition, i.e., a|I| ≤ Pr[Πi∈IXi = 1] ≤
b|I| ∀I ⊆ [n], and |I| ≤ k. Suppose there is a small
gap between a and b, a + k/n ≤ b ≤ c. In the case
ack−1 ≥ bk, there exists a unique solution p ∈ [0, 1] and
s ∈ [0, 1] to the following system of equations:

(3.3)

{
p · c+ (1− p) · s = a

p · ck + (1− p) · sk = bk.

Then we have respectively the following tail bound, and
complementary tightness example

Pr

[
n∑
i=1

Xi ≥ cn

]
≤ p+

k2/n

(k − 1)ak − kak−1c+ ck
.

Pr

[
n∑
i=1

Xi ≥ cn

]
≥ p− (k/n) · (2(a+ k/n))

(c− a− k/n)2(k − 1)
.

If ack−1 < bk (i.e., the gap between c and b is much
smaller than between a and b), then we have respectively
the following tail bound, and complementary tightness
example

Pr

[
n∑
i=1

Xi ≥ cn

]
≤
(

b

c− k/n

)k
=
bk

ck

(
1− k

cn

)−k
.

Pr

[
n∑
i=1

Xi ≥ cn

]
≥ bk

ck

(
1−

(
k

n(b− a)

)k)
.

Proof. We prove lower bound by a feasible solution for
the primal LP and upper bound by a feasible solution
for the dual LP. We choose a primal feasible solution
xj with only two non-zeros variables, one at j = cn to
maximize the objective, and the other at j = sn where
s is chosen to satisfy the constraints. As n approaches
infinity, the binomial coefficients in the constraints of
the primal LP can be well approximated by powers,
and then the power mean inequality suggests only three
constraints (when i = 0, i = 1 and i = k) are relevant.
These constraints are approximated by the system of
equations. The dual solution we choose contains only
three non-zeros, corresponding to the three relevant
constraints.

The following approximation will be useful to sim-
plify coefficients in the constraints.

Claim 1. Let 1 ≥ α ≥ k/n, then for any 0 ≤ i ≤ k, we
have

αi ≥
(
αn
i

)(
n
i

) ≥ (α− k

n

)i
.

Proof. Note that(
αn
i

)(
n
i

) =
αn · (αn− 1) · . . . · (αn− i+ 1)

n · (n− 1) · . . . · (n− i+ 1)
=

i−1∏
j=0

αn− j
n− j

.

Now for any j ≤ k ≤ αn, we have

α =
αn− αj
n− j

≥ αn− j
n− j

≥ αn− j
n

= α− j

n
≥ α− k

n
.

Hence for any i ≤ k ≤ αn,

αi ≥
i−1∏
j=0

αn− j
n− j

≥
(
α− k

n

)i
.

Lower bound. We first consider the case ack−1 ≥
bk−1. Let fi(p, s) := pci+(1−p)si, and so the system of
equations is f1(p, s) = a, fk(p, s) = bk. Note that if we
keep the invariant fk(p, s) = bk, and move p from 0 to
(b/c)k, then s strictly decreases from b to 0, and f1(p, s)
strictly decreases from b ≥ a to bk/ck−1 ≤ a. Since the
move is smooth, we conclude there is a unique solution
(p, s) such that both f1(p, s) = a and fk(p, s) = bk are
satisfied. By similar argument, when a+k/n ≤ b, there
is another solution (p′, s′) such that f1(p′, s′) = a+ k/n
and fk(p′, s′) = bk. We shall first construct a primal
feasible solution with (p′, s′), and then analyze the
difference between p and p′.

There are two cases. Suppose s′ is not too small,
s′ ≥ k/n. Our construction is xcn = p′/

(
n
cn

)
, xs′n =

(1 − p′)/
(
n
s′n

)
, and xj = 0 for any other j. Then the

objective value is p′, and the i-th constraint becomes

ai ≤
(
n− i
cn− i

)
xcn +

(
n− i
sn− i

)
xs′n = p′

(
n−i
cn−i

)(
n
cn

) +

(1− p′)
(
n−i
s′n−i

)(
n
s′n

) = p′
(
cn
i

)(
n
i

) + (1− p′)
(
s′n
i

)(
n
i

) ≤ bi.
Note that by the power mean inequality, we have for
any s ≥ 0 and p ∈ [0, 1],

f1(p, s) ≤ fi(p, s)1/i ≤ fk(p, s)1/k.

Hence by Claim 1, we have

p′
(
cn
i

)(
n
i

) + (1− p′)
(
s′n
i

)(
n
i

) ≤ p′ci + (1− p′)s′i

≤ (p′ck + (1− p′)s′k)i/k = bi,
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and

p′
(
cn
i

)(
n
i

) +(1−p′)
(
s′n
i

)(
n
i

) ≥ p′(c− k

n

)i
+(1−p′)

(
s′ − k

n

)i
≥
(
p′(c− k

n
) + (1− p′)

(
s′ − k

n

))i
= ai.

If s′ < k/n, then our construction is xcn = p′/
(
n
cn

)
,

x0 = 1 − p′, and xj = 0 for any other j. Then the
objective value is p′, and the 0-th constraint is satisfied,
and the i-th constraint (1 ≤ i ≤ k) becomes

ai ≤ p′
(
cn
i

)(
n
i

) ≤ bi.
By Claim 1, we have

p′
(
cn
i

)(
n
i

) ≤ p′ci ≤ p′ci + (1− p′)s′i ≤ bi,

and

p′
(
cn
i

)(
n
i

) ≥ p′(c− k

n

)i
≥
(
p′
(
c− k

n

))i
≥
(
p′
(
c− k

n

)
+ (1− p′)s′ − (1− p′)k

n

)i
=

(
p′c+ (1− p′)s′ − k

n

)i
≥ ai.

Hence in both cases, p′ is a lower bound to the primal
optimum.

Now we analyze the change of p when a is changed
to a + k/n. We keep the invariant fk(p, s) = b, and
hence

0 =
d

dp
fk(p, s) = ck − sk + (1− p)ksk−1 ds

dp
,

or
ds

dp
= − ck − sk

(1− p)ksk−1
.

This implies

− d

dp
f1(p, s) = −(c−s)−(1−p)ds

dp
=
ck − sk

ksk−1
−(c−s)

= (c− s)
(
ck−1 + ck−2s+ . . .+ sk−1

ksk−1
− 1

)
= (c− s)

(
(ck−1 − sk−1) + (ck−2 − sk−2)s+ . . .

ksk−1

)
≥ (c− s)2

(
(k − 1)sk−2 + (k − 2)sk−2 + . . .

ksk−1

)
= (c− s)2 k − 1

2s
≥ (c− a− k/n)2(k − 1)

2(a+ k/n)
,

where the last inequality holds since s is always upper
bounded by a. Therefore the change of p is at most

p− p′ ≤ k

n
/(− d

dp
f1(p, s)) ≤ (k/n) · (2(a+ k/n))

(c− a− k/n)2(k − 1)
.

Hence the primal feasible solution we constructed has
objective

p′ ≥ p− (k/n) · (2(a+ k/n))

(c− a− k/n)2(k − 1)
.

For the second case ack−1 < bk, there is no solution
to the system of equations. Our construction is s =
kb/(n(b − a)), p = (bk − sk)/(ck − sk), xcn = p/

(
n
cn

)
,

xsn = (1−p)/
(
n
sn

)
, and xj = 0 for any other j. To show

that it is a primal feasible solution, it suffices to show
that f1(p, s) ≥ a+ k/n and fk(p, s) ≤ bk. Our choice of
p implies fk(p, s) = bk. On the other hand,

f1(p, s) = s+(c−s)b
k − sk

ck − sk
= s+(b−s)b

k−1 + . . .+ sk−1

ck−1 + . . .+ sk−1

≥ s+(b−s)
(
b

c

)k−1

≥ s+(b−s)a
b

= a+s
(

1− a

b

)
= a+

k

n
.

Hence we constructed a primal feasible solution with
objective

p =
bk − sk

ck − sk
≥ bk − sk

ck
=
bk

ck

(
1−

(
k

n(b− a)

)k)
.

Upper bound. We first consider the case ack−1 ≥
bk−1. In such case we have solution (p, s) to the system
of equations. Our feasible solution for the dual LP will
only have non-zero values at λ0, λ1, and λk. Let f(x) =
γ0 + γ1x + γkx

k satisfies f(c) = 1, f(s) = f ′(s) = 0.
Then we can check that

f(x) =
(k − 1)sk − ksk−1x+ xk

(k − 1)sk − ksk−1c+ ck
.

Since f ′(x) < 0 when 0 < x < s and f ′(x) > 0 when
x > s, we have f(x) ≥ 0 for all x ∈ [0, c] and f(x) ≥ 1
for all x ∈ [c, 1].

Let λ0 = γ0 + (k2/n)γk, λ1 = −γ1, and λk = γk.
Then the j-th constraint of the dual LP is

γ0 +
k2

n
γk + γ1

j

n
+ γk

j(j − 1) . . . (j − k + 1)

n(n− 1) . . . (n− k + 1)
≥ 1j≥cn.

Copyright © 2021 by SIAM
Unauthorized reproduction of this article is prohibited2413

D
ow

nl
oa

de
d 

01
/0

1/
22

 to
 1

43
.1

10
.1

55
.2

08
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/p
ag

e/
te

rm
s



Since f(x) ≥ 1x≥c, we have for any j ≥ k,

γ0 +
k2

n
γk + γ1

j

n
+ γk

j(j − 1) . . . (j − k + 1)

n(n− 1) . . . (n− k + 1)

= f

(
j

n

)
+
k2

n
γk + γk

(
j(j − 1) . . . (j − k + 1)

n(n− 1) . . . (n− k + 1)

−
(
j

n

)k)
≥ 1j≥cn + γk

(
k2

n
+

(
j

n
− k

n

)k
−
(
j

n

)k)

≥ 1j≥cn + γk

(
k2

n
− k

n
· k ·

(
j

n

)k−1
)
≥ 1j≥cn

For j < k,

γ0+
k2

n
γk+γ1

j

n
+γk

j(j − 1) . . . (j − k + 1)

n(n− 1) . . . (n− k + 1)
= f

( j
n

)
+

γk

(
k2

n
−
( j
n

)k) ≥ f( j
n

)
+ γk

(
k2

n
−
(k
n

)k) ≥ f( j
n

)
.

Hence we constructed a dual feasible solution with
objective

(k − 1)sk − ksk−1a+ bk

(k − 1)sk − ksk−1c+ ck
+
k2

n
γk.

The first term is exactly p. This is because p(ck−sk) =
bk − sk and p(c− s) = a− s, and hence

p((k−1)sk−ksk−1c+ck) = p(ck−sk)−ksk−1p(c−s)
= bk − sk − ksk−1(a− s).

Finally since (k − 1)sk − ksk−1c + ck decreases with s
as long as s ≤ c by considering its derivative, we can
upper bound γk by ((k− 1)ak − kak−1c+ ck)−1. Hence
the error term is at most

k2

n((k − 1)ak − kak−1c+ ck)
.

For the second case ack−1 < bk, we shall just let
λk = (c − k/n)−k and all other dual variables to be 0.
Then the j-th constraint of the dual LP is

λk
j(j − 1) . . . (j − k + 1)

n(n− 1) . . . (n− k + 1)
≥ 1j≥cn.

Clearly the constraints are satisfied when j < cn, since
λk is non-negative. When j ≥ cn,

λk
j(j − 1) . . . (j − k + 1)

n(n− 1) . . . (n− k + 1)
≥
(
c− k

n

)−k (
j

n
− k

n

)k
≥
(
c− k

n

)−k (
cn

n
− k

n

)k
= 1.

Hence this is a feasible solution, with objective value
λkb

k = bk(c− k/n)−k.

A regime of particular interest is when a, b, and
c are close to 1/2: a = (1 − ε)/2, b = (1 + ε)/2,
c = (1 + γ)/2, where 2ε < γ = o(1). In this regime,
solution to the system of equations (3.3) has p ≈
2ε/(2ε+kγ2) (see Appendix A). To compare our bounds
in Theorem 3.2 to CH bound for k-wise independent
random variables [SSS93], we should consider γ =
Ω(
√
k/n). Then, even for a very small approximation

error b − a = 2k/n, the tightness example in the case
ack−1 ≥ bk makes p ≈ 2ε/(2ε+kγ2) ≈ 2/k which yields
a lower bound of Ω(1/k), a much worse guarantee than
e−Ω(k) for the exact k-wise independence.

3.4 XOR Condition Here we derive our strongest
tail bound using k-wise XOR condition on {0, 1}-
random variables X.

Theorem 3.3. Let γ > 0. Suppose for any set I ⊆ [n]
of size at most k, Bias(⊕i∈I Xi) ≤ ε|I|, then

Pr

[
n∑
i=1

Xi ≥
n(1 + γ)

2

]
≤

ε+
√

k
n

γ

k

.

The same conclusion holds even for the average-ε-XOR
condition.

This result is most useful when expectations of each
variable E[Xi] is around 1/2. With a more careful
analysis, it is possible to improve the parameters slightly
and extend Theorem 3.3 to bounded range variables6

(see Theorem B.1 in Appendix B).
The concentration bound in Theorem 3.3 bypasses

the limitation of (a, b)-product conditions when a = (1−
ε)/2 and b = (1+ε)/2 are around 1/2, c = (1+γ)/2, and
k � n . For γ ≥ 2(ε+

√
k/n), product conditions yield

exp(−Ω(γk)), while XOR condition yields exp(−Ω(k)).

Proof. Let Yi = 2Xi−1, so that Yi ∈ {−1, 1}. Consider

6For the clarity of exposition and because we need this specific
form in our cryptographic application, we decided to state the
theorem in this form. Theorem 3.3 considers one-sided XOR
condition, i.e., the condition is satisfied when Pr[⊕i∈I Xi = 0]
is close to 1. One can similarly define two-sided XOR condition,
and define corresponding LP approach to analyze the exact tail
bounds. However, the tail bound for the one-sided XOR condition
is already nearly optimal compared to k-wise independence case.
It also suffices for our main application. Thus we leave the
question of improving concentration bounds for two-sided XOR
condition for future work.
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the k-th moment method.

Pr

[
n∑
i=1

Yi ≥ γn

]
≤ Pr

( n∑
i=1

Yi

)k
≥ (γn)k


≤ E

( n∑
i=1

Yi

)k
/(γn)k

 .
We shall expand (

∑
i Yi)

k and regroup the terms. Each

term is in the form
∏k
l=1 Yil =

∏n
i=1 Y

ni
i , where ni is the

number of times Yi appears in the product. Let j be the
total number of nis that are odd. Then E[

∏k
l=1 Yil ] ≤ εj

by replacing every Yi with 1 except j of them (note that
Y 2
i = 1).

Now we count the number of terms that have
exactly j different variables Yi with an odd degree ni.
We can uniquely describe such a term by the following
procedure. Let S ⊆ [k] be the set of indices ` in the

product
∏k
`=1 Yi` , such that ` ∈ S if and only if the

degree ni` of Yi` is odd and ` is the smallest index for
i` (if there is more than one Yi` in the product). Thus
|S| = j. Then we choose different i` ∈ [n] for each
of the ` ∈ S. So far we have at most

(
k
j

)
possibilities

for choosing S ⊆ [k] and at most nj possibilities for
choosing each of the i`. The remaining indices in [k] \S
can be grouped into pairs. We have at most n choices
for i` and at most k−j−1 choices for the position of its
pair; the second unmatched index and its pair have at
most n · (k − j − 3) possibilities, and so on. Therefore,
there are at most n(k−j)/2 ·(k−j−1)(k−j−3) · . . . ·1 ≤
n(k−j)/2k(k−j)/2 = (

√
nk)k−j possibilities for the indices

outside of S. Hence we get

E

( n∑
i=1

Yi

)k ≤ k∑
j=0

εj
(
k

j

)
nj(
√
nk)k−j

=

k∑
j=0

(
k

j

)
(εn)j(

√
nk)k−j =

(
εn+

√
nk
)k
.

This completes the proof. The same proof holds for
average-ε-XOR condition, because the coefficient is the
same for all terms that have exactly j different variables
with odd degree, so that average-ε-XOR condition gives
the same upper bound on their grouping sum as ε-XOR
condition does.

4 Non-uniform security of pseudorandom
generators and related problems

In this section, we prove Theorem 1.1 (Pseudorandom
Generators), Theorem 1.2 (Hard-core Predicates) and
Theorem 1.3 (Yao’s Box Problem).

By Yao’s reduction of distinguishers to predic-
tors [Yao82], Theorem 1.2 immediately gives Theo-
rem 1.1. So we omit the proof of Theorem 1.1 and prove
Theorem 1.2 and Theorem 1.3. We recall the statement
of Theorem 1.2.

Theorem 4.1. Let P : [N ] → {0, 1} be a random
function and f : [N ] → [N ] be a random permutation.
For any oracle algorithms A1,A2, such that A1 outputs
an S-bit advice (S ≥ 1), and A2 makes T queries, it
holds that

Pr
[
AO2 (AO1 , f(x)) = P (x)

]
=

1

2
+ Õ

(
ST

N
+

√
S

N

)
.

where x is uniformly drawn from [N ], and O = (f, P ).

4.1 A tight security bound for hardcore predi-
cates: Proof of Theorem 1.2 Let A = (A1,A2) be
an attacker for the hardcore predicate problem. With-
out loss of generality, we assume that A is deterministic
(by fixing the best choice of random coins). We will
show that for any fixed advice string w ∈ {0, 1}S , it
holds that

(4.4) PrO

[
Prx

[
AO2 (w, f(x)) = P (x)

]
≥

1

2
+ ε+

√
S + log(1/γ)

N

]
≤ 2−S · γ .

where γ := 1/N , ε := 6(S + log(1/γ))T/N . By the
union bound over 2S advice strings,

PrO

[
Prx

[
AO2 (AO1 , f(x)) = P (x)

]
≥

1

2
+ ε+

√
S + log(1/γ)

N

]
≤ γ .

Then by an averaging argument over O, we obtain

Pr
[
AO2 (AO1 , f(x)) = P (x)

]
≤ 1

2
+ ε

+

√
S + log(1/γ)

N
+ γ =

1

2
+ Õ

(
ST

N
+

√
S

N

)
,

which gives Theorem 1.2.
Fix an arbitrary w ∈ {0, 1}S , and consider boolean

variables X1, . . . , XN , where Xy is the indicator for the
event AO2 (w, y) = P (f−1(y)). For any permutation f ,
because (f−1(y), y) distributes the same as (x, f(x)) for
uniformly random x, y from [N ], (4.4) can be rewritten
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as

Pr

 1

N

∑
y∈[N ]

Xy ≥
1

2
+ ε+

√
S + log(1/γ)

N

 ≤ 2−S ·γ .

By Theorem 3.3, it suffices to prove that for any
I ⊆ [N ] of size at most S + log(1/γ), Bias(⊕i∈I Xi) ≤
ε|I|. This is implied by the following lemma.

Lemma 4.1. For any I ⊆ [N ], Bias(⊕i∈I Xi) ≤
(6|I|T/N)|I|.

Proof. For |I| ≥ N/6T , the statement holds trivially
because Bias(⊕i∈I Xi) ≤ 1 and 6|I|T/N ≥ 1. Fix a set
I of size k where k ≤ N/6T . For any y ∈ [N ], observe
that,

Xy = 1AO2 (w,y)=P (f−1(y)) = P (f−1(y))⊕ (AO2 (w, y))⊕1.

By the property of XOR function,

⊕
y∈I

Xy =

(
⊕
y∈I

P (f−1(y))

)
⊕
(
⊕
y∈I
AO2 (w, y)

)
⊕
(
⊕
y∈I

1

)
Hence to obtain the claimed upper bound on
Bias(⊕y∈I Xy), it suffices to prove that
(4.5)

2 Pr[ ⊕
y∈I
AO2 (w, y) =

(
⊕
y∈I

P (f−1(y))

)
⊕b′] ≤ 1+

(
6kT

N

)k
where b′ ∈ {0, 1} is fixed bit only depending on k, and
the randomness is only over O (recall that I is fixed and
A2 is deterministic).

Let Γ be the random variable correspond-
ing to the transcript containing query/answer pairs
(x1,O(x1), . . . , xq,O(xq)) resulting from simulating A2

with advice w for every y ∈ I where q := kT . Let E
denote the event that every preimage of y ∈ I appears
as a query in Γ, in other words, f−1(y) = xi for some
i ∈ [q].

Claim 2. 2Pr[ ⊕
y∈I
AO2 (w, y) = ( ⊕

y∈I
P (f−1(y))) ⊕ b′] ≤

1 + Pr[E].

Proof. Let τ be an arbitrary possible transcript. Con-
ditioned on Γ = τ , because A2 is deterministic,
⊕y∈IAO2 (w, y) is a fixed bit. Let Iτ ⊆ I denote the
set of elements in I whose preimage appears as a query
in τ . Then

⊕
y∈I

P (f−1(y)) =

(
⊕
y∈Iτ

P (f−1(y))

)
⊕
(
⊕

y∈I\Iτ
P (f−1(y))

)

is fixed if Iτ = I, otherwise it is a random bit because
P is a random function on f−1(I \ Iτ ). Therefore,

Pr [Z = 1] = Pr [Z = 1|IΓ = I] ·Pr [IΓ = I]

+ Pr [Z = 1|IΓ 6= I] ·Pr [IΓ 6= I]

≤ 1 ·Pr [IΓ = I] +
1

2
·Pr [IΓ 6= I] =

1 + Pr[IΓ = I]

2
.

Observe that the event IΓ = I is exactly E. The desired
conclusion follows.

To prove (4.5) and complete the proof, it remains to
show that Pr[E] ≤ (6Tk/N)k. Let Ei denote the event
that the i-th distinct query gets mapped to some y in
I under f . Conditioning on all previous query/answer
pairs, then each Ei has conditional probability at most
k/(N−q) ≤ 2k/N (recall k ≤ N/6T ). There are at most
q such events. If E happens, there must be at least k
of these events that are true. For each of the

(
q
k

)
sets

of these events, the probability that all of these events
occur simultaneously is at most (2k/N)k. So E happens
with probability at most

(
q
k

)
(2k/N)|I| ≤ (2eq/N)k ≤

(6Tk/N)k.

4.2 A tight attack for Yao’s box problem:
Proof of Theorem 1.3 We recall the statement of
Theorem 1.3.

Theorem 4.2. Let P : [N ] → {0, 1} be a random
function. There exist oracle algorithms A1,A2, that
A1 outputs an S-bit advice, and A2 makes T queries
without querying the given input x, such that

Pr
[
AP2 (AP1 , x) = P (x)

]
=

1

2
+ Ω

(√
ST

N

)
.

where x is uniformly drawn from [N ].

We present the proof for the case when N is a multiple
of ST and ` := N/S is an odd number. The general
case can be analyzed in a similar way by allowing
some sets resulted from the partition to have smaller
size than others. Let X1, . . . , XS denote the natural
partition of [N ] into consecutive blocks of size `: Xi :=
{(i − 1)` + 1, . . . , i`}. Similarly, let Xi,1, . . . , Xi,`/T

denote the natural partition of Xi such that each set
has size T .

The offline algorithm AP1 computes zi,j =
⊕x∈Xi,jP (x) for every i, j, then outputs an S-bit state
where the i-th bit is equal to maj(zi,1, . . . , zi,`/T ) where
maj is the majority function. The online algorithm AP2 ,
on given S-bit advice b1, . . . , bS and x ∈ [N ], computes
z′i,j := ⊕y∈Xi,j\{x}P (y) (by querying P on all points in
Xi,j except x), and outputs z′i,j⊕bi as the prediction for
P (x), where i, j is the unique pair such that x ∈ Xi,j .
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Fix an arbitrary x ∈ [N ] together with i, j such that
x ∈ Xi,j . Since z′i,j ⊕ bi = zi,j ⊕ bi⊕P (x), it holds that
z′i,j ⊕ bi = P (x) if and only if bi = zi,j . Hence, for any
fixed x ∈ [N ],

Pr
[
AP2 (AP1 , x) = P (x)

]
= Pr [bi = zi,j ]

= Pr
[
maj(zi,1, . . . , zi,`/T ) = zi,j

]
.

Because P is a random function, and
Xi,1, . . . , Xi,`/T are disjoint, zi,1, . . . , zi,`/T are random
and mutually independent.

Pr
[
maj(zi,1, . . . , zi,`/T ) = zi,j

]
=

Pr

∑
k 6=j

zi,k =
`/T − 1

2

+
1

2
Pr

∑
k 6=j

zi,k 6=
`/T − 1

2


=

1

2
+

(
`/T − 1
`/T−1

2

)
· 2−`/T =

1

2
+ Ω

(√
T

`

)
.

The first equality holds because if
∑
k 6=j zi,k = `/T−1

2 ,
zi,j determines the majority, otherwise zi,j is an in-
dependent bit of the majority. The last equation
holds, because

√
2πn (n/e)n ≤ n! ≤ e

√
n (n/e)n so(

n
n/2

)
= Ω(2n/

√
n). Finally, by averaging over x,

we conclude that A predicts correctly with probability
1/2 + Ω(

√
T/`) = 1/2 + Ω(

√
ST/N). This completes

the proof.

5 A general approach for proving non-uniform
security

In this section, we provide a general approach for
proving non-uniform security bounds of cryptographic
applications, by “translating” our concentration bounds
into the statements about security. To illustrate usage
of this approach, we reprove Theorem 1.2 as an example.

5.1 Setting up the language To illustrate our
approach, we formally define attackers with oracle-
dependent advice, and other notions from relevant cryp-
tographic applications. Our definitions are adopted
from Coretti et al. [CDGS18] (with slight simplifica-
tions). We stress that to derive results in our appli-
cation, it suffices to focus on concrete settings, which
we will mention along the way.

Oracle model. An O-model is defined by speci-
fying a domain [N ], a range [M ], and a distribution
over oracle functions from [N ] to [M ]. O-models cap-
ture a variety of idealized model in cryptography, in-
cluding the random oracle model (i.e., O : [N ] → [M ]
is a random function), the random permutation model
(i.e, O : [N ] → [N ] is a random permutation), generic

group models (i.e., O : [N ] → [M ] is a random injec-
tion), etc. For our main result, we only need to consider
O := (f, P )-model where f : [N ]→ [N ] is a random per-
mutation, and P : [N ]→ {0, 1} is a random function.

Attackers with oracle-dependent advice. At-
tackers A = (A1,A2) consist of a preprocessing pro-
cedure A1 and an online algorithm A2, which carries
out the actual attack using the output of A1. In the
presence of an oracle O, both A1 and A2 interacts with
O.

Definition 5.1. An (S, T )-attacker A = (A1,A2) in
the O-model consists of two procedures

• A1, which is computationally unbounded, interacts
with O, and outputs an S-bit string, and

• A2, which takes an S-bit auxiliary input and makes
at most T queries to O.

Cryptographic applications. An application G
in the O-model is defined by specifying a challenger C,
which is an oracle algorithm that has access to O,
interacts with the main stage A2 of an attacker A =
(A1,A2), and outputs a bit at the end of the interaction.
The success of A on G in the O-model is defined as

SuccG,O(A) := Pr
[
AO2 (AO1 )↔ CO = 1

]
,

where AO2 (AO1 )↔ CO denotes the bit output by C after
its interaction with the attacker.

We consider two types of applications, which are
captured by the following definition.

Definition 5.2. For an application G in the O-model,
we define

Advantage of attacker A for indistinguishability G:

AdvG,O(A)
def
= 2 · SuccG,O(A)− 1 .

Advantage of attacker A for unpredicatability G:

AdvG,O(A)
def
= SuccG,O(A) .

((S, T ), ε)-secure: G is ((S, T ), ε)-secure if for every
(S, T )-attacker A AdvG,O(A) ≤ ε .

A typical example of unpredictability application is
one-way permutation denoted as OWP. The challenger
C sends a y to A for a random y from [N ], and outputs
1 if A returns of f−1(y) where f : [N ] → [N ] is a
random permutation. The advantage ofA is the same as
the success probability of A, captured by the following
probability,

AdvOWP,f (A) = SuccG,f (A)

= Pr
[
Af2 (Af1 , y) = f−1(y)

]
,
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where the probability is taken over f ,y and the random-
ness of A.

Unlike unpredictability applications, indistin-
guishability applications admit a random guess attack,
which easily achieves 1/2 success probability. There-
fore, the advantage for indistinguishability application
is measured by how much it is better than 1/2.

To prove our main result, we only need to consider
the indistinguishability application of hardcore predi-
cate HCP in the O = (f, P )-model. The application
is specified by the C, which samples a random y from
[N ], sends y to A, and outputs 1 if and only if A an-
swers P (f−1(y))7. The advantage of A is captured by
the following probability.

AdvHCP,O(A) = 2 · SuccHCP,O(A)− 1

= 2Pr
[
AO2 (AO1 , y) = P (f−1(y))

]
− 1,

where the probability is taken over O,y and the ran-
domness of A.

k-wise product and XOR applications. The
translation of our product and XOR conditions, will be
captured by the security of the following applications.
Let O be an arbitrary oracle and G be an application
in the O-model.

The k-wise product application of G, denoted as
G⊗k, is specified by the following challenger C⊗k. C⊗k

samples a random subset I := {r1, . . . , rk} ⊆ [N ] of
size k, where [N ] is the randomness space of C. C⊗k

simulates C on r1, . . . , rk ∈ [N ] (one by one), and
outputs 1 if only if C outputs 1 on every r1, . . . , rk after
its interaction with the attacker. The advantage of A
for OWP⊕k is captured by the following probability.

AdvOWP⊗k,O(A) = SuccOWP⊗k,O(A) = Pr [Z = 1] .

where probability is over O,I and the randomness of A.
As an example, we consider the k-wise product

application of OWP. The challenger C×k sends a
random subset of k elements I = {y1, . . . , yk} to A,
and outputs Z := ∩ki=1(1P−1(yi)=xi) after A returns
x1, . . . , xk.

The k-wise XOR application of G, denoted as G⊗k,
is specified by the challenger C⊕k, which C⊕k simulates
C on a random size-k subset I := {r1, . . . , rk} ⊆ [N ]
(one by one), and outputs the parity of the output of C
on r1, . . . , rk after its interaction with the attacker.

To prove our main result, we only need to consider
the k-wise XOR application of HCP, which is also
an indistinguishability application. The C⊕k sends

7We remark for any permutation f , C is equivalent to C′ which
samples a random x from [N ], sends f(x) to A, and outputs 1 if
and only if A answers P (x).

a random subset of k elements I = {y1, . . . , yk} to
A, and outputs Z := ⊕ki=1(1P (f−1(yi))=bi) after A
returns b1, . . . , bk. Notice that because 1P (f−1(yi))=bi =
P (f−1(yi))⊕ bi ⊕ 1, Z can be written as

Z =
(
⊕ki=1P (f−1(yi))

)
⊕
(
⊕ki=1bi

)
⊕
(
⊕ki=11

)
.

Hence the advantage of A for HCP⊕k is captured by the
following probability.

AdvHCP⊕k,O(A) = 2 · SuccHCP⊕k,O(A)− 1

= 2Pr [Z = 1]− 1 .

where probability is over O,I and the randomness of A.
Equivalently, A aims to predict ⊕ki=1P (f−1(yi)) (or its
negation) in the application of HCP⊕k.

5.2 Reducing non-uniform security to product
or XOR security: Proof of Lemma 1.1

Lemma 5.1. Let O be an arbitrary model, and G be an
arbitrary application in O-model.

1. If G is an unpredictability application, and G⊗k

is ((0, Tk), εk)-secure for any positive integer k ≤
S+ log(1/γ) in the O-model, then G is ((S, T ), ε′)-
secure in the O-model, where

ε′ ≤ 6ε+
S + log(1/γ)

N
+ γ .

2. If G is an indistinguishability application, and G⊕k

is ((0, Tk), εk)-secure for any positive integer k ≤
S+ log(1/γ) in the O-model, then G is ((S, T ), ε′)-
secure in the O-model, where

ε′ ≤ 2ε+ 2

√
S + log(1/γ)

N
+ γ .

where [N ] is the randomness space used by the chal-
lenger associated with G.

For most of applications we can set γ = 1/N , which
will be dominated by other terms. Thus we will ignore
γ and poly log(N) terms in the following discussion for
the purpose of clarity.

The above lemma works for an arbitrary O-model,
thus it applies to a variety of well studied cryptographic
idealized model, such as the random oracle model,
random permutation and generic group model. A
common difficulty in analyzing non-uniform security in
those models is that most of the standard techniques
do not work when preprocessing and oracle-dependent
advice are allowed. In particular, for the random oracle
model, many techniques are based on the independence
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of values in different inputs, which does not hold for
attackers with even a single bit of advice.

For an arbitrary idealized model, the above lemma
reduces proving security of an application G against
attackers with S-bit of advice to proving the security of
its S-wise product and XOR variants against attackers
with no advice. The latter statement is considered to
be much simpler task, because standard techniques are
applicable again.

Moreover, the blow up from ε to ε′ is very small,
which is appealing and crucial for obtaining tight non-
uniform security bounds for our application. In partic-
ular, for unpredictability applications, ε′ = O(ε+S/N),
and for indistinguishability applications, ε′ = O(ε +√
S/N).

Proof. Let A be an (S, T )-attacker for G in the O-
model. Without loss of generality, we assume that A
is deterministic. Our proof for both cases follows the
same template. We will show for some κ and γ, and
any fixed S-bit string w,

PrO
[
AdvG,O(Aw,A2) ≥ κ

]
≤ 2−S · γ

where Aw outputs the fixed advice string w, and we
abuse the notion of AdvG,O(Aw,A2) to denote the
advantage of (Aw,A2) respect to a fixed choice of O.
Then by an averaging argument and a union bound over
2S possible advice, we obtain

AdvG,O(A1,A2) ≤ 1·PrO
[
AdvG,O(A1,A2) ≥ κ

]
+κ·1

≤ γ + κ .

Fix an arbitrary w ∈ {0, 1}S and let A = (Aw,A2).
For r ∈ [N ], let Xr be the output bit of (AO ↔ CO(; r))
meaning the output of C using randomness r.

If G is an unpredictability application, we consider
the A⊗k for G⊗k which simply runs A separately on
given k challenges from C⊗k with at most Tk queries
and a fixed advice. Suppose G⊗k is (0, Tk, εk)-secure,
then,

PrI [Πi∈IXi = 1] = Pr[(A⊗k)O ↔ (C⊗k)O = 1]

= AdvG⊗k,O(A⊗k) ≤ εk.

Hence, X1, . . . , XN satisfies average ε-product condition
for k ≤ S + log 1/γ. By Theorem 3.1,

PrO [X1 + · · ·+XN ≥ 6εN + k] ≤
(
N
k

)
εk(

6εN+k
k

)
≤
(
Neε/k

6εN/k

)k
≤ 2−k.

where the second inequality is because
(
N
k

)
≤ (Ne/k)k

and
(

6εN+k
k

)
≥ (6εN/k)k. Observe that AdvG,A(O)

is
∑
i∈[N ]Xi/N . By setting k = S + log 1/γ and

κ = 6ε+ k/N , we obtain the desired conclusion.
If G is an indistinguishable application, we consider

A⊕k for G⊕k which simply runs A on given challenges
from C⊕k with at most Tk queries and a fixed advice.
Suppose G⊕k is (0, Tk, εk)-secure, then,

Bias(⊕i∈I Xi) = 2 Pr[(A⊗k)O ↔ (C⊗k)O = 1]− 1

= AdvG⊕k,O(A⊕k) ≤ εk.

Hence, X1, . . . , XN satisfies (average) ε-XOR condition
for k ≤ S + log 1/γ. By Theorem 3.3,

PrO

[
X1 + · · ·+XN ≥

N(1 + 2ε+ 2
√
k/N)

2

]

≤

(
ε+

√
k/N

2ε+ 2
√
k/N

)k
= 2−k.

Observe that AdvG,O(A) is 2
∑
i∈[N ]Xi/N − 1. By

setting k = S + log 1/γ, κ = 2ε + 2
√
k/N , we obtain

the desired conclusion.

5.3 An XOR lemma for hardcore predicates
In this section, we prove the following lemma which
essentially translates Lemma 4.1 using the language of
XOR-security.

Lemma 5.2. HCP⊕k is ((0, Tk), (6kT/N)k)-secure in
the O = (f, P )-model, where O = (f, P ), f : [N ]→ [N ]
is a random permutation, and P : [N ] → {0, 1} is a
random function.

Proof. For k ≥ N/6T , the statement holds trivial. Let
k ≤ N/6T . Let A be the best (0, Tk)-attacker for
HCPk. Without loss of generality, we assume that A
is deterministic.

Recall that the challenger C⊕k for HCP⊕k sends a
random subset of k elements I = {y1, . . . , yk} ⊆ [N ]
to A, and outputs Z := ⊕ki=1(1P (f−1(yi))=bi) after
A returns b1, . . . , bk. And because 1P (f−1(yi))=bi =
P (f−1(yi))⊕ bi ⊕ 1, Z can be written as

Z =
(
⊕ki=1P (f−1(yi))

)
⊕
(
⊕ki=1bi

)
⊕
(
⊕ki=11

)
.

Hence, the advantage of A for HCP⊕k is captured by
the following probability.

AdvHCP⊕k,O(A) = 2 · SuccHCP⊕k,O(A)− 1

= 2Pr [Z = 1]− 1,
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where probability is taken over O,I. Equivalently,
A aims to predict (⊕ki=1P (f−1(yi)))⊕(⊕ki=1bi) (or its
negation) in the application of HCP⊕k. It suffices to
prove that, conditioning on any fixed choice of I =
{y1, . . . , yk},

2Pr [Z = 1] ≤ 1 +

(
6kT

N

)k
,

where the randomness is over O. By averaging over the
random I, it implies the desired conclusion.

Let Γ be the random variable corresponding
to the transcripts containing query/answer pairs
(x1,O(x1), . . . , xq,O(xq)) resulting fromA’s interaction
with O, where q = kT . Let IΓ be the random variable
corresponding to the set of y ∈ I, whose preimage under
f has been queried by A, in other words, f−1(y) = xi
for some i ∈ [q].

Claim 3. 2Pr[Z = 1] ≤ 1 + Pr[IΓ = I].

Proof. Let τ be an arbitrary possible transcript. Con-
sider Z conditioned on Γ = τ . Because A is determin-
istic, ⊕ki bi is a fixed bit. However,

⊕ki=1 P (f−1(yi)) =

(
⊕
y∈Iτ

P (f−1(y))

)
⊕
(
⊕

y∈I\Iτ
P (f−1(y))

)
is fixed if Iτ = I, otherwise it is a random bit because
P is a random function on f−1(I \ Iτ ). Therefore,

Pr [Z = 1] = Pr [Z = 1|IΓ = I] ·Pr [IΓ = I]

+ Pr [Z = 1|IΓ 6= I] ·Pr [IΓ 6= I]

≤ 1 ·Pr [IΓ = I] +
1

2
·Pr [IΓ 6= I] =

1 + Pr[IΓ = I]

2
.

The desired conclusion follows.

It remains to upper bound Pr[IΓ = I] by (6Tk/N)k. A2

makes at most q (adaptive) queries. Let Ei denote the
event that the i-th distinct query gets mapped to some y
in I under f . Conditioning on all previous query/answer
pairs, then each Ei has conditional probability at most
k/(N − q) ≤ 2k/N (recall k ≤ N/6T ). There are at
most q such events. If IΓ = I happens, there must be
at least k of these events that are true. For each of
the

(
q
k

)
sets of these events, the probability that all of

these events occur simultaneously is at most (2k/N)k.
So the probability that IΓ = I happens is at most(
q
k

)
(2k/N)|I| ≤ (2eq/N)k ≤ (6Tk/N)k.

5.4 Putting things together: Proof of The-
orem 1.2 By Lemma 5.2, for any k, HCP⊕k is
((0, Tk), (6kT/N)k)-secure in the O-model where O =
(f, P ), f : [N ] → [N ] is a random permutation, and
P : [N ]→ {0, 1} is a random predicate. We choose

γ :=
1

N
and ε :=

6(S + log(1/γ))T

N
.

So that, for any k ≤ S + log(1/γ), G⊕k is (0, Tk, εk)-
secure in the O-model. By Lemma 1.1, the indistin-
guishability application HCP is (S, T, ε′)-secure in the
O-model, where

ε′ ≤ 2ε+ 2

√
S + log(1/γ)

N
+ γ = Õ

(
ST

N
+

√
S

N

)
.

In other words, for any (S, T )-attacker A,

Pr
[
AO2 (AO1 , y) = P (f−1(y))

]
≤ 1 + ε′

2

=
1

2
+ Õ

(
ST

N
+

√
S

N

)
,

which completes the proof.
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A Calculation of bounds in Theorem 3.2

Claim 4. Suppose a = (1− ε)b and c = (1 + γ)b, where
ε < γ < 1/(2k). Then the solution p to the system of
equations (3.3) (f1(p, s) = a and fk(p, s) = bk) satisfies

2ε

(k − 1)γ2
≥ p ≥ ε− kε2

kγ2 + 2εγk + ε
= Ω

(
ε

ε+ kγ2

)
.

Proof. Observe that f1(p, s) = pc+ (1−p)s = a implies
s = (1− (ε+ pγ)/(1− p))b. Hence,

p(1 + γ)k + (1− p)
(

1− ε+ pγ

1− p

)k
= 1.

Since 1 + kx ≤ (1 + x)k for all x, and 1 + kx + k(k −
1)x2/2 ≤ (1 + x)k for all x ≥ 0, we have

1 ≥ p
(

1 + kγ +
k(k − 1)γ2

2

)
+(1−p)

(
1− k(ε+ pγ)

1− p

)
= 1 + pkγ + p

k(k − 1)γ2

2
− k(ε+ pγ).

This means

p ≤ 2ε

(k − 1)γ2
.

On the other hand, since (1+x)k ≤ ekx ≤ 1+kx+k2x2

assuming kx ≤ 1, we have

1 ≤ p(1 + kγ + k2γ2)

+ (1− p)

(
1− k ε+ pγ

1− p
+ k2

(
ε+ pγ

1− p

)2
)
.

This implies

p ≥ ε− kε2

kγ2 + 2εγk + ε
.

When a = (1 − ε)/2, b = (1 + ε)/2, c = (1 + γ)/2
with ε = k/n and γ = Θ(

√
k/n), Claim 4 gives us

p ≥ 2ε−k(2ε)2

2ε+4kγε+kγ2 = 2k/n
kγ2 (1 + o(1)) = 2

nγ2 (1 + o(1)).
Theorem 3.2 gives us the an example, i.e., provides a
lower bound on the tail probability

Pr

[
n∑
i=1

Xi ≥ cn

]
≥ p− (k/n) · (2(a+ k/n))

(c− a− k/n)2(k − 1)

= p− k/n

k(γ + 2ε− k/n)2
(1 + o(1)) =

2(1 + o(1))

nγ2

− (1 + o(1))

nγ2
=

1

nΘ(k/n)
(1 + o(1)) = Ω(1/k).
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B General XOR Condition

In this subsection, we consider general XOR condition
and prove the following theorem.

Theorem B.1. Suppose X1, X2, . . . , Xn are random
variables, and a1, a2, . . . , an are approximate expecta-
tions of these variables, with the following constraints
satisfied.

1. (Bounded range) |Xi − ai| ≤ R with probability 1
for all i.

2. (General XOR condition) For any subset I ⊆ [n]
with |I| ≤ k, we have

E

[∏
i∈I

(Xi − ai)

]
≤ ε|I|.

Then we have the following concentration bound.

Pr

[
n∑
i=1

Xi ≥
n∑
i=1

ai + γn

]
≤
√

2

(
(ε+R

√
k

en
)
1

γ

)k
.

In particular when Xi are ±1 random variables with
the ε-XOR condition, then take ai = 0 and R = 1 and
we have

Pr

[
n∑
i=1

Xi ≥ γn

]
≤
√

2

((
ε+

√
k

en

)
1

γ

)k
.

Proof. Let Yi = Xi − ai. Consider the k-th moment
method.

Pr

[
n∑
i=1

Yi ≥ ηn

]
= Pr

( n∑
i=1

Yi

)k
≥ (ηn)k


≤ E

( n∑
i=1

Yi

)k /(ηn)k.

We shall expand (
∑
i Yi)

k and regroup the terms. Each

term is in the form
∏k
l=1 Yil =

∏n
i=1 Y

pi
i , where pi is

the number of times Yi appears in the term. Let j be
the number of odd pis. Then E[

∏k
l=1 Yil ] ≤ Rk−jεj by

replacing every Yi with R except j of them.
Now we count the number of terms with exactly j

odd pis. We can uniquely determine such a term by the
following procedure. First we fix a subset S ⊆ [k] which
represents the indices of odd items. So l ∈ S means Yil
appears odd times. If il appear more than once, we will
just choose any of them. So |S| = j. Then we choose
il for each of the l ∈ S. So far we have at most

(
k
j

)
possibilities for choosing S and at most nj possibilities
for choosing each of the il.

The remaining items outside S can be grouped into
pairs. We consider the first index il 6∈ S. We have n
choices for il and k − j − 1 choices for the position of
its pair. Similarly the second unmatched index have
at most n · (k − j − 3) possibilities, and so on. So the
remaining items has at most n(k−j)/2 ·(k−j−1)(k−j−
3) · . . . · 1 ≤

√
2n(k−j)/2(k−je )(k−j)/2 possibilities. The

last equality holds since

(m− 1)(m− 3) . . . 1 =
m!

(m/2)!2m/2
≤
√

2(m/e)m,

as

1

2
log

m

2
+ log(

m

2
+ 1) + log(

m

2
+ 2) + . . .+ log(m− 1)

+
1

2
logm ≤

∫ m

m/2

log xdx =
m

2
logm− m

2
+
m

2
log 2

Summing up, we have

E

( n∑
i=1

Yi

)k ≤ n∑
j=0

Rk−jεj
(
k

j

)
nj
√

2n
k−j
2

·
(
k − j
e

) k−j
2

≤
√

2
n∑
j=0

(
k

j

)
Rk−jεjnjn

k−j
2

(
k

e

) k−j
2

=
√

2

n∑
j=0

(
k

j

)
(εn)j

(
R

√
nk

e

)k−j

=
√

2

(
εn+R

√
nk

e

)k
.

This completes the proof.
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