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This paper considers Bayesian revenue maximization in the 𝑘-unit setting, where a monopolist seller has 𝑘

copies of an indivisible item and faces 𝑛 unit-demand buyers (whose value distributions can be non-identical).

Four basic mechanisms among others have been widely employed in practice and widely studied in the

literature:Myerson Auction, Sequential Posted-Pricing, (𝑘 + 1)-th Price Auction with Anonymous Reserve,

and Anonymous Pricing. Regarding a pair of mechanisms, we investigate the largest possible ratio between

the two revenues (a.k.a. the revenue gap), over all possible value distributions of the buyers.

Divide these four mechanisms into two groups: (i) the discriminating mechanism group, Myerson Auction

and Sequential Posted-Pricing, and (ii) the anonymousmechanism group,Anonymous Reserve andAnonymous

Pricing. Within one group, the involved two mechanisms have an asymptotically tight revenue gap of

1 +Θ(1/
√
𝑘). In contrast, any two mechanisms from the different groups have an asymptotically tight revenue

gap of Θ(log𝑘).
CCS Concepts: • Theory of computation → Algorithmic mechanism design; Computational pricing
and auctions.
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1 INTRODUCTION
“Simple vs. optimal” is one of the central themes in Bayesian mechanism design. The revenue-

optimal mechanisms are more of theoretical significance, but are usually complicated and hard to

implement in practice. On the other hand, most of the commonly used mechanisms in real life are

much simpler, although sacrificing a (small) amount of revenue. This trade-off motivates the study

on how well simple mechanisms can approximate the optimal mechanisms.
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Even in the most basic single-item model, the optimal mechanism is already complicated. This

mechanism is proposed in the seminal work by Myerson [39]. It needs full knowledge of all buyers’

individual value distributions. Typically, the value distributions are estimated from market research

and historical transaction records. Hence, the knowledge can only be “probably approximately

correct” (especially in large markets) and the optimal mechanism is very fragile to the estimation

errors. Also, Myerson’s auction involves price discrimination among buyers, which is not allowed

in most real businesses.

Simple mechanisms can address the above issues and are prevalent in both online and offline

shops. For example, consider selling a number of identical copies of some product on Amazon.

(This is captured by themulti-unitmodel, see Section 1.1 for details.) The seller simply posts a price,

and a buyer decides to buy one copy if the price is acceptable to him. This mechanism is called

anonymous pricing. In order to find the optimal price, the seller only needs to know the overall

demand, which is much easier to estimate than the individual value distributions as in Myerson’s

auction. Once again, the question is how well the anonymous pricing mechanism can approximate

the optimal revenue.

The last two decades have seen extensive progress on the “simple versus optimal” trade-off

[2, 3, 6, 8, 13–15, 19, 21, 23, 25, 28–30, 32]. By now we can say that it constitutes a subfield within

mechanism design. In this work, we will study this trade-off in the multi-unit model.

1.1 Background
Let us first review the previous results. In the most basic single-item model, four fundamental

mechanisms among others are widely studied. Denote by F = {𝐹 𝑗 } 𝑗 ∈[𝑛] the independent value
distributions of buyers 𝑗 ∈ [𝑛]. These four mechanisms work as follows (see Section 2.2 for the

formal definitions).

• Anonymous Pricing (AP): This mechanism treats all buyers equally by posting a price 𝑝 . Upon

arrival, a buyer will pay this price 𝑝 and take the item, when his value 𝑏 𝑗 ∼ 𝐹 𝑗 is higher than

𝑝 (and the item is still available). If the seller knows the value distributions {𝐹 𝑗 } 𝑗 ∈[𝑛] , she
would select a particular price 𝑝 to maximize her expected revenue among all Anonymous

Pricing mechanisms.

• Sequential Posted Pricing (SPM): This mechanism selects an array of prices {𝑝 𝑗 } 𝑗 ∈[𝑛] and an

ordering 𝜎 : [𝑛] ↦→ [𝑛]. The buyers join in the mechanism sequentially 𝜎 (1), · · · , 𝜎 (𝑛), and
each index-𝜎 ( 𝑗) buyer must pay the order-specific price 𝑝 𝑗 if winning. This discrimination

can give better revenue than Anonymous Pricing.

• Anonymous Reserve (AR): This is a variant of the Second-Price Auction. The seller ignores

the buyers whose bids 𝑏 𝑗 are below an anonymous reserve 𝑟 . The winner (which exists only

if the highest bid 𝑏 (1) is above the reserve 𝑟 ) is the highest of the remaining buyers, and his

payment is the bigger one between the second highest bid 𝑏 (2) and the reserve 𝑟 .

• Myerson Auction (OPT): A generic auction A : {𝑏 𝑗 } 𝑗 ∈[𝑛] ↦→ (x, 𝝅) is a mapping from

the bids/values to the allocations x = (𝑥 𝑗 ) 𝑗 ∈[𝑛] and the payments 𝝅 = (𝜋 𝑗 ) 𝑗 ∈[𝑛] . In the

single-item case,Myerson Auction is the optimal one among those mappings [39]. (When the

distributions {𝐹 𝑗 } 𝑗 ∈[𝑛] are identical, Myerson Auction degenerates to Anonymous Reserve.)

These four mechanisms together form the hierarchy in Figure 1, where each arrow goes from a

more complicated mechanism with higher revenue to a simpler mechanism with lower revenue.

There are two notable distinctions among the four mechanisms.

• Anonymity (AP and AR) vs. Discrimination (SPM and OPT). We say a mechanism is dis-

criminating if, when different buyers become the winner, the required payments can be
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OPT: discriminating auction

SPM: discriminating pricing AR: anonymous auction

AP: anonymous pricing

[1.34, 1.49] [2.15, C∗]

C∗ ≈ 2.62

C∗ ≈ 2.62 𝜋2/6 ≈ 1.64

Fig. 1. Demonstration for the previous results in the single-item setting with asymmetric regular buyers,

where an interval indicates the best known lower/upper bounds, and a number indicates a tight bound. For

the references of these results and further discussions, one can refer to [31, Section 6] and [27, Chapter 4].

different. Otherwise we say the mechanism is anonymous. Intuitively, discrimination gives a

mechanism more power to extract revenue.

• Pricing (AP and SPM) vs. Auction (AR and OPT). In a pricing scheme, the buyers simply

make take-it-or-leave-it decisions based on the given prices. In contrast, an auction is an

arbitrary mapping from the bids to the allocations and the payments. Auctions can gain

higher revenues than pricing schemes by further leveraging the competition among buyers.

Because SPM is a discriminating pricing scheme and AR is an anonymous auction, they have

different powers and are incomparable. Accordingly, there are five comparable mechanism pairs

(i.e., the five arrows in Figure 1).

To understand the relative powers of those mechanisms, the very first question is how large

the revenue gap between any two mechanisms can be. We characterize the revenue gap as the

approximation ratio
1
between the two revenues. Formally, for a more complicated mechanismM1

and a simpler mechanismM2, their approximation ratio is given by

ℜM1/M2

def

= sup

{
RevM1

(F)
RevM2

(F)

���� F ∈ F
}
,

where RevM (F) denotes the revenue from a mechanism M on an input instance F = {𝐹 𝑗 } 𝑗 ∈[𝑛] ,
and the supremum is taken over a certain family of distributions F ∈ F .

For the single-item model, the known results are shown in Figure 1. Notice that all these revenue

gaps are universal constants, and most of them have matching lower and upper bounds.

From Single Unit to Multiple Units. In this work, we focus on the 𝑘-unit setting, where the

seller has 𝑘 ≥ 1 identical copies of an item, and aims to sell them to 𝑛 unit-demand buyers. This

setting is much more realistic and common in real business. Further, it is of intermediate complexity

in comparison with the (more restricted) single-item setting and the (more general) multi-item

setting.
2
Nonetheless, the “simple vs. optimal” trade-offs are much less understood in this setting

than in the single-item setting.

Since the 𝑘-unit setting is still a single-parameter setting, Myerson Auction remains revenue-

optimal [39]. In addition, both of Anonymous Pricing and Sequential Posted Pricing can be naturally

extended to this setting. For Anonymous Reserve, the counterpart auction is no longer “second-

price-type”, but is the (𝑘 + 1)-th Price Auction with Anonymous Reserve.

1
The earlier “mechanism design for digit goods” literature [6, 13, 14, 23, 25], due to technical reasons, often uses the term

“competitive ratio” rather than “approximation ratio”.

2
In the 𝑘-unit setting, the 𝑘 copies are identical. But in the multi-item setting, the items can be heterogeneous.
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1.2 An overview of our results
In the 𝑘-unit setting, previously only the revenue gap ℜOPT/SPM between OPT and SPM is well

understood [2, 7, 41], but the other four gaps are widely open. By exploring the relative power

of those mechanisms systematically, in this work we establish the (asymptotically) tight ratios of

all previously unknown revenue gaps. We formalize our new results as the next two theorems

and demonstrate them in Figure 2. (Therein, the regularity assumption is very standard in the

mechanism design literature [39]; see Section 2.1 for its definition.)

OPT: discriminating auction

SPM: discriminating pricing AR: anonymous auction

AP: anonymous pricing

1 + Θ(1/
√
𝑘)

::::::
Θ(log𝑘)

::::::
Θ(log𝑘)

::::::
Θ(log𝑘)

:::::::::
1 + Θ(1/

√
𝑘)

Fig. 2. Demonstration for the revenue gaps among basic mechanisms in the 𝑘-unit setting, given that the

value distributions are regular. Our new results are
:::::::::
underwaved. The 1 + Θ(1/

√
𝑘) approximation result

between AR and AP is given in Theorem 1, and the other three results are given in Theorem 2.

Theorem 1 (Anonymous Reserve vs. Anonymous Pricing). For the unit-demand buyers 𝑗 ∈ [𝑛], in
each of the following three settings,

3
the revenue gapℜAR/AP (𝑘) between Anonymous Reserve and

Anonymous Pricing isℜAR/AP (𝑘) = 1 + Θ(1/
√
𝑘):

(1) The asymmetric general setting, where the buyers have independent but not necessarily identical

value distributions.

(2) The i.i.d. general setting, where the value distributions are identical.
(3) The asymmetric regular setting, where the value distributions are regular but not necessarily

identical.

Theorem 2 (Discriminating Mechanisms vs. Anonymous Mechanisms). When the unit-demand

buyers 𝑗 ∈ [𝑛] have independent and regular value distributions, each of the next three revenue gaps

is of order Θ(log𝑘):
(1) The revenue gapℜOPT/AP(𝑘) betweenMyerson Auction and Anonymous Pricing.

(2) The revenue gapℜSPM/AP (𝑘) between Sequential Posted Pricing and Anonymous Pricing.

(3) The revenue gapℜOPT/AR(𝑘) betweenMyerson Auction and Anonymous Reserve.

Similar to the AR vs. AP revenue gap, the previous works [2, 7, 41] show that the OPT vs. SPM

revenue gap is also of order 1 + Θ(1/
√
𝑘). Consequently, regarding the discriminating mechanism

group (OPT and SPM) and the anonymous mechanism group (AR and AP), each revenue gap across

these two groups is Θ(log𝑘), but the revenue gap between the two mechanisms in one group tends

to vanish (at the rate of 1/
√
𝑘) when the number of copies 𝑘 ∈ N≥1 becomes large. These messages

can be easily inferred from Figure 2.

Asmentioned, the revenue gaps identify the power and the limit of “discrimination vs. anonymity”

and “auction vs. pricing” in revenue maximization. Different from the single-item setting, where all

the revenue gaps are universal constants (see Figure 1), our new results in the 𝑘-unit setting are

more informative. When the number of copies 𝑘 ∈ N≥1 is large:

3
In the i.i.d. regular setting, an asymptotically tight bound 1 + Θ(1/

√
𝑘) is shown in [41, Section 4.2], [27, Section 4.5] and

[7, Section 5].

 
Technical Program Presentation ∙ EC '21, July 18–23, 2021, Budapest, Hungary

657



• Auctions are not much more helpful than pricing schemes in extracting the revenue (i.e., just

an 1 + Θ(1/
√
𝑘) improvement), no matter whether discrimination is allowed or not.

• Discrimination is always very useful, and can even give an unbounded improvement (up to a

Θ(log𝑘) factor) on the revenue.

These propositions meet what we observe in real business: auctions are rarely used in practice,

whereas different kinds of price discrimination are rather common.

1.2.1 First Result: Anonymous Reserve vs. Anonymous Pricing. In this section, we sketch the proof

of our 1+Θ(1/
√
𝑘) approximation result for the AR vs. AP revenue gap (Theorem 1). In fact, we can

represent the exact ratioℜAR/AP as an explicit integration formula, (although this formula in general

does not admit an elementary expression). We acquire this formula by solving a mathematical

programming generalized from [32, Program (4)], which resolves the same problem for the single-

item case 𝑘 = 1.

However, many crucial properties of the single-item case do not preserve in the general case

𝑘 ≥ 1. In the single-item case, Anonymous Reserve relies on the first/second order statistics 𝑏 (1)
and 𝑏 (2) (i.e., the biggest and second biggest sampled bids/values), and Anonymous Pricing relies

on the 𝑏 (1) . Therefore, we only need to reason about these two random variables, 𝑏 (1) and 𝑏 (2) ,
together with the correlation between them. In the 𝑘-unit case, however, up to (𝑘 + 1) random
variables 𝑏 (1) , · · · , 𝑏 (𝑘+1) must be taken into account, and the correlation among them becomes

much more complicated.

For the above reasons, we cannot modify and re-adopt the approach of the work [32] in a naive

way. Instead, with the purpose of handling the highly correlated order statistics 𝑏 (𝑖) ’s, we will
develop a new structural lemma about the Poisson binomial distributions (PBDs). This new lemma

mainly relies on the log-concavity of the PBDs.

Lemma (Bernoulli Sum Lemma). Given two arrays of Bernoulli random variables: {𝑋 𝑗 } 𝑗 ∈[𝑛] are
i.i.d., while {𝑌𝑗 } 𝑗 ∈[𝑛] are independent yet not necessarily identically distributed. For the random sums

𝑋 =
∑

𝑗 ∈[𝑛] 𝑋 𝑗 and 𝑌 =
∑

𝑗 ∈[𝑛] 𝑌𝑗 , there exists some threshold 𝑠 ∈ R such that:

(1) Pr[𝑋 ≤ 𝑡] ≥ Pr[𝑌 ≤ 𝑡] for any 𝑡 < 𝑠 .

(2) Pr[𝑋 ≤ 𝑡] ≤ Pr[𝑌 ≤ 𝑡] for any 𝑡 ≥ 𝑠 .

With the help of this lemma, we can characterize the worst-case instance of the mentioned

mathematical programming, for 𝑘 ≥ 1 and 𝑛 ≥ 1. To this end, let us formulate the AR and AP

revenues. Denote by 𝐹 𝑗 the cumulative distribution function (CDF) of buyer 𝑗 ’s value, and 𝐷𝑖 the

CDF of the 𝑖-th order statistic 𝑏 (𝑖) . The Anonymous Reserve revenue (Fact 3) is given by

AR(𝑟 ) = AP(𝑟 ) + 𝑘 ·
∫ ∞

𝑟

(1 − 𝐷𝑘+1 (𝑥)) · d𝑥, ∀𝑟 ≥ 0.

where AP(𝑟 ) is the revenue by posting the price 𝑝 = 𝑟 in Anonymous Pricing. Further, the AP

revenue (Fact 2) depends on the top-𝑘 CDF’s {𝐷𝑖 (𝑟 )}𝑖∈[𝑘 ] at this reserve 𝑟 ≥ 0.

Now consider a Bernoulli sum 𝑌 =
∑

𝑗 ∈[𝑛] 𝑌𝑗 , for which the individual failure probabilities are

Pr[𝑌𝑗 = 0] = 𝐹 𝑗 (𝑟 ). This choice of the failure probabilities ensures Pr[𝑌 ≤ 𝑖 − 1] = 𝐷𝑖 (𝑟 ) for every
𝑖 ≥ 1. Further, we can find another array of i.i.d. Bernoulli random variables {𝑋 𝑗 } 𝑗 ∈[𝑛] so that the

sum 𝑋 =
∑

𝑗 ∈[𝑛] 𝑋 𝑗 satisfies

Pr[𝑋 ≤ 𝑘] = Pr[𝑌 ≤ 𝑘] = 𝐷𝑘+1 (𝑟 ).
(The existence of such {𝑋 𝑗 } 𝑗 ∈[𝑛] is obvious.) Then our Bernoulli Sum Lemma shows that

Pr[𝑋 ≤ 𝑖 − 1] ≥ Pr[𝑌 ≤ 𝑖 − 1] = 𝐷𝑖 (𝑟 )
for each 𝑖 ∈ [𝑘], where the equality holds when the {𝑌𝑗 } 𝑗 ∈[𝑛] are also i.i.d.
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Informally speaking, the above inequalities and the equality condition imply that, the ratio

AR(𝑟 )/AP(𝑟 ) is maximized when the value CDF’s are equal 𝐹1 (𝑟 ) = · · · = 𝐹𝑛 (𝑟 ) at this reserve.
Following this argument and with extra efforts, we have the next observation.

Observation. For each 𝑘 ≥ 1 and 𝑛 ≥ 1, the worst case for theℜAR/AP revenue gap happens when
the value distributions are identical, i.e., F∗ = {𝐹 ∗}𝑛 , (although this worst-case common distribution

𝐹 ∗ is given by an implicit equation and does not admit an elementary expression).

Furthermore, it is noteworthy that the above approach enables a unified constructive proof

for the upper-bound/lower-bound parts of the general case 𝑘 ≥ 1. In contrast, the former work

[32] establishes these two parts of the single-item case separately, and their upper-bound proof is

non-constructive.

Our Bernoulli Sum Lemma can find its applications in related directions. As mentioned, we

leverage it mainly to handle the order statistics. Apart from the “simple vs. optimal mechanism

design” paradigm, on other topics such as “learning simple mechanisms from samples” [9, 14, 33,

37, 38], the order statistics are also of fundamental interests. Conceivably, our new lemma would

be helpful for those topics, in a similar manner as this paper.

1.2.2 Second Result: Discriminating Mechanisms vs. Anonymous Mechanisms. In this section we

sketch the proof of Theorem 2, which claims that the revenue gapsℜOPT/AP,ℜSPM/AP andℜOPT/AR
are all of order Θ(log𝑘). In fact, any one bound implies the other two. This is because the revenue

gaps within the discriminating/anonymous groups (OPT vs. SPM, and AR vs. AP) are both constants

1 + Θ(1/
√
𝑘) = Θ(1), and these constants are dominated by the Θ(log𝑘) bound.

For these reasons, it suffices to only prove the OPT vs. AP revenue gap ℜOPT/AP = Θ(log𝑘).
Actually, an Ω(log𝑘) lower bound for this revenue gap is already shown in [28, Example 5.4], so

we only need to prove the 𝑂 (log𝑘) upper bound.
We actually prove the𝑂 (log𝑘) upper bound between Anonymous Pricing and a benchmark called

Ex-Ante Relaxation (EAR in short). It is known that this benchmark always exceeds theMyerson

Auction revenue [11]. To acquire the 𝑂 (log𝑘) upper bound, we will start with a mathematical

programming generalized from [3, Equations (1) and (2)].

However, the general-case mathematical programming has a very different structure as it is

in the single-item case. When 𝑘 = 1, the worst-case instance (i.e., the optimal solution, see [3,

Section 4.3]) turns out to be a continuum of “small” buyers – any single buyer has an infinitesimal

contribution to the EAR benchmark, but there are infinitely many buyers 𝑛 → ∞ (in the sense of

large markets [4, 36]). Accordingly, it is better to think about the “density” of different types of

buyers, instead of the number of buyers.

But in the general case, the Ω(log𝑘) lower-bound instance [28, Example 5.4] essentially is

constituted by “big” buyers – a certain amount of buyers contribute at least 1/𝑘 unit to the EAR

benchmark each, while every other buyer contributes strictly 0 unit and can be omitted. More

importantly (see Remark 4), if we insist on a continuum of “small” buyers in the general case 𝑘 ≥ 1,

then the EAR vs. AP revenue gap turns out to be (at most) a universal constant for whatever 𝑘 ≥ 1.

For these reasons, the current approach must be very different from the single-item case. At a

high level, to handle the general case 𝑘 ≥ 1, we will classify the buyers 𝑗 ∈ [𝑛] into groups, and

then bound the individual contributions from these groups to the EAR benchmark.

In more details, we can employ the technique developed in [3, Lemma 4.1], and thus transform

the mentioned mathematical programming into the following one.

Variables:
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• {𝑣 𝑗 } 𝑗 ∈[𝑛] ∈ R𝑛≥0, where 𝑣 𝑗 = argmax{𝑝 · (1−𝐹 𝑗 (𝑝)) : 𝑝 ≥ 0} for 𝑗 ∈ [𝑛], are the buyer-wise
optimal posted prices of the distributions F = {𝐹 𝑗 } 𝑗 ∈[𝑛] .

• {𝑞 𝑗 } 𝑗 ∈[𝑛] ∈ [0, 1]𝑛 , where 𝑞 𝑗 = 1 − 𝐹 𝑗 (𝑣 𝑗 ) for 𝑗 ∈ [𝑛], are the buyer-wise optimal quantiles.

• The resulting {𝑣 𝑗𝑞 𝑗 } 𝑗 ∈[𝑛] ∈ R𝑛≥0 are the buyer-wise optimal revenues.

Constraints:
• The capacity constraint,

∑
𝑗 ∈[𝑛] 𝑞 𝑗 ≤ 𝑘 .

• The feasibility constraint, AP(𝑝, F) ≤ 1 for all 𝑝 ∈ R≥0.

Objective: Maximize the Ex-Ante Relaxation benchmark EAR(F) = ∑
𝑗 ∈[𝑛] 𝑣 𝑗𝑞 𝑗 .

Regarding the EAR benchmark, the buyer-wise optimal revenues {𝑣 𝑗𝑞 𝑗 } 𝑗 ∈[𝑛] are precisely the

individual contributions from the distributions {𝐹 𝑗 } 𝑗 ∈[𝑛] . Given the capacity constraint (in the

sense of the Knapsack Problem), the quantiles {𝑞 𝑗 } 𝑗 ∈[𝑛] can be viewed as the individual capacities.

Therefore, the prices {𝑣 𝑗 } 𝑗 ∈[𝑛] can be viewed as the bang-per-buck ratios (i.e., the contribution to

the EAR benchmark per unit of the capacity).

To find the optimal solution, of course we prefer those distributions with higher bang-per-buck

ratios {𝑣 𝑗 } 𝑗 ∈[𝑛] , but also need to take the capacities {𝑞 𝑗 } 𝑗 ∈[𝑛] into account. Informally, we will

classify the buyers into three groups [𝑛] = 𝐿 ∪ 𝐻𝑆 ∪ 𝐻𝐵 :

• 𝐿 = { 𝑗 ∈ [𝑛] : 𝑣 𝑗 < 1/𝑘}. Because these group-𝐿 distributions have lower bang-per-buck

ratios 𝑣 𝑗 < 1/𝑘 , conceivably the total contribution by this group to the EAR benchmark shall

be small. Indeed, we will prove a constant upper bound

∑
𝑗 ∈𝐿 𝑣 𝑗𝑞 𝑗 = 𝑂 (1).

• 𝐻𝑆 = { 𝑗 ∈ [𝑛] : 𝑣 𝑗 ≥ 1/𝑘 and 𝑣 𝑗𝑞 𝑗 < 1/(2𝑘)}. In other words, the group-𝐻𝑆 distributions

have high enough bang-per-buck ratios 𝑣 𝑗 ≥ 1/𝑘 but small capacities, i.e., 𝑣 𝑗𝑞 𝑗 < 1/(2𝑘). It
turns out that the total contribution by this group is also small, and we also will prove a

constant upper bound

∑
𝑗 ∈𝐻𝑆

𝑣 𝑗𝑞 𝑗 = 𝑂 (1).
• 𝐻𝐵 = { 𝑗 ∈ [𝑛] : 𝑣 𝑗 ≥ 1/𝑘 and 𝑣 𝑗𝑞 𝑗 ≥ 1/(2𝑘)}. That is, these group-𝐻𝐵 distributions have

high enough bang-per-buck ratios and big enough capacities. Therefore, this group should

contribute the most to the EAR benchmark. Taking into account the feasibility constraint,

AP(𝑝, F) ≤ 1 for all 𝑝 ∈ R≥0, we will show
∑

𝑗 ∈𝐻𝐵
𝑣 𝑗𝑞 𝑗 = 𝑂 (log𝑘).

The actual grouping criteria in our proof are more complicated than the above ones, in order to

handle other technical issues.

Finally, we notice that our grouping criteria borrow ideas from the “budget-feasible mechanism”

literature [12, 24, 40], where the target is to design approximately optimal mechanisms for the

Knapsack Problem under the incentive concerns.We hope that these ideas can findmore applications

to the “simple vs. optimal mechanism design” research topic.

1.3 Further Related Works
The revenue gaps among the mentioned mechanisms, Myerson Auction, Sequential Posted Pricing,

Anonymous Reserve, and Anonymous Pricing, are extensively studied in the literature. Below we

provide an overview of the previous results (mainly in the single-item setting and in the 𝑘-unit

settings). As a supplement, the reader can refer to the surveys [16, 31, 34] and the textbook [27].

AR vs. AP. This revenue gap studies the relative power between the auction schemes and the

pricing schemes, when the price discrimination is not allowed. The previously known results in

the single-item case are shown in the next table.

i.i.d. regular 𝑒/(𝑒 − 1) ≈ 1.58 [11, Thm 6] & [27, Thm 4.13]

i.i.d. general

𝜋2/6 ≈ 1.64 [32, Thm 2]asymmetric regular
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asymmetric general

In the 𝑘-unit case, an asymptotically tight bound 1/(1 − 𝑘𝑘/(𝑒𝑘𝑘!)) ≈ 1/(1 − 1/
√
2𝜋𝑘) for

i.i.d. regular buyers is shown in [41, Section 4.2] and [27, Section 4.5]. Our new results settle the

remaining pieces of the puzzle – even though the i.i.d. assumption and/or the regularity assumption

are removed, this revenue gap is still of order 1 + Θ(1/
√
𝑘).

SPM vs. AP. This revenue gap studies the power of price discrimination in pricing schemes. We

summarize the known results and our new results, in both the single-item case and the 𝑘-unit case.

single-item case SPM vs. AP OPT vs. AP

i.i.d. regular 𝑒/(𝑒 − 1) ≈ 1.58 [11, Thm 6] & [27, Thm 4.13]

i.i.d. general 2 − 1/𝑛 [19, Thm 3] [27, Thm 4.9]

asymmetric regular constant C∗ ≈ 2.62 [32, Thm 1] [30, Thm 1]

asymmetric general 𝑛 [3, Prop 6.1]

𝑘-unit case SPM vs. AP OPT vs. AP

i.i.d. regular 1/(1 − 𝑘𝑘/(𝑒𝑘𝑘!)) ⋄ [19, Thm 1] [41, Sec 4.2]

i.i.d. general 2 − 𝑘/𝑛 [19, Thm 3] [27, Sec 4.5]

asymmetric regular Θ(log𝑘) this work

asymmetric general 𝑛 [3, Prop 6.1]

⋄ this bound is just asymptotically tight

OPT vs. AP. This revenue gap is to illustrate that even the simplest mechanism, Anonymous

Pricing, can approximate the optimal revenue in quite general settings. Actually, in each of the

single-item/𝑘-unit, i.i.d./asymmetric, regular/general settings, this ratio “coincedentally” is equal

to the SPM vs. AP revenue gap, namely ℜOPT/AP = ℜSPM/AP.
4
(But the results respectively for

ℜOPT/AP andℜSPM/AP are credited to different works.) For brevity, we summarize the results on

the both revenue gaps together in the above tables.

Instead of the regularity assumption, the stronger monotone-hazard-rate (MHR) distributional

assumption is also very standard in the mechanism design literature. The previous works [22, 29]

study the OPT vs. AP revenue gap in the single-item i.i.d. MHR setting.

OPT vs. AR. This ratio studies the power of price discrimination in the auction schemes. When

the value distributions are i.i.d. and regular, Myerson Auction and Anonymous Reserve turn out to

be identical [39]. The results beyond the i.i.d. regular case are given below.

single-item case

i.i.d. general 2 − 1/𝑛 [27, Thm 4.9]

asymmetric regular

LB ≈ 2.15 [28, Sec 5] & [32, Thm 3]

UB = C∗ ≈ 2.62 [28, Sec 5] & [30, Thm 1]

asymmetric general 𝑛 [3, Prop 6.1]

4
The reader may wonder why the revenue gaps ℜ

OPT/AP and ℜ
SPM/AP are equal, in each of the single-item/𝑘-unit,

i.i.d./asymmetric, regular/general settings. This is because, in each of these settings, the worst-case instance {𝐹 ∗
𝑗
} 𝑗∈[𝑛]

of the OPT vs. AP problem has a nice property: for each 𝐹 ∗
𝑗
, the corresponding virtual-value distribution is supported on

the non-positive semiaxis (−∞, 0] plus a single positive number 𝑣∗
𝑗
> 0. When an instance satisfies this property, we can

adopt the arguments in [32, Lemma 1] to show that OPT and SPM extract the same amount of revenue, which implies

ℜ
OPT/AP = ℜ

SPM/AP.
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𝑘-unit case

i.i.d. general 2 − 𝑘/𝑛 [27, Sec 4.5]

asymmetric regular Θ(log𝑘) this work

asymmetric general 𝑛 [3, Prop 6.1]

Notably, the tight ratio in the single-item asymmetric regular setting is still unknown. Hartline

and Roughgarden first prove that this ratio is between 2 and 4 [28, Section 5]. Afterwards, the lower

bound is improved to ≈ 2.15 [32, Theorem 3]. But the best known upper bound just follows from

the tight OPT vs. AP revenue gap C∗ ≈ 2.62 by implication. We highly believe this factor-C∗
barrier

can be broken, for which new techniques tailored for Anonymous Reserve rather than Anonymous

Pricing are required.

Beyond the Anonymous Reserve mechanism, other simple auctions with the more powerful

personalized reserves are also extensively studied [7, 28, 35].

OPT vs. SPM. This revenue gap investigates the relative power between the auction schemes and

the pricing schemes, when the price discrimination is allowed. Indeed, the previous works [17, 26]

show that this problem is identical to the ordered prophet inequality problem in stopping theory. In

each of the single-item/𝑘-unit i.i.d./asymmetric settings, the tight revenue gaps under/without the

regularity assumption turn out to be the same (see, e.g., [41, Section 3.1]). The previous results in

the single-item/𝑘-unit cases are summarized below.

single-item case

i.i.d. constant 𝛽 ≈ 1.34 [15, Thm 1.3]

asymmetric

LB = 𝛽 ≈ 1.34 [15, Thm 1.3]

UB = 1/(1 − 1/𝑒 + 1/27) ≈ 1.49 [18, Thm 1.1]

𝑘-unit case

i.i.d./asymmetric

LB = 1 + Ω(1/
√
𝑘) [26, Thm 7]

UB = 1 +𝑂 (1/
√
𝑘) [41, Sec 4.2] and [7, Sec 5].

Noticeably, the tight ratio in the single-item asymmetric setting is still unknown. The best

known lower bound just follows from the tight “i.i.d.” revenue gap 𝛽 ≈ 1.34 by implication.

Recently, there is an outburst of activity on the upper bound [5, 7, 18], and the best known result

is 1/(1 − 1/𝑒 + 1/27) ≈ 1.49 [18, Theorem 1.1]. It remains an interesting open question to further

refine the upper bound.

Beyond the 𝑘-unit setting, the OPT vs. SPM revenue gap is also studied in the more general

matroid setting. For this, the work [11, Theorem 5] first shows an upper bound of 2, and then [41,

Section 4.1] improves it to 𝑒/(𝑒 − 1) ≈ 1.58.

The Sequential Posted Pricing mechanism crucially leverages the order in which the buyers

participate in the mechanism. Instead, the order-oblivious counterpart mechanisms are extensively

studied as well [1, 2, 5, 7, 11, 18, 20].

Organization. In Section 2 we introduce the notation and requisite knowledge about the considered
mechanisms. We investigate the Ex-Ante Relaxation vs. Anonymous Pricing problem in Section 3.

For the Anonymous Reserve vs. Anonymous Pricing problem, a formal statement of our results and

the proofs can be found from the full version of this paper.
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2 NOTATION AND PRELIMINARIES
This section includes the notation to be adopted in this paper, and the basic knowledge about

probability (e.g. the regular/triangle distributions) and the concerning mechanisms.

Notation. Denote by R≥0 (resp. N≥1) the set of all non-negative real numbers (resp. positive

integers). For any pair of integers 𝑏 ≥ 𝑎 ≥ 0, define the sets [𝑎] def

= {1, 2, · · · , 𝑎} and [𝑎 : 𝑏] def

=

{𝑎, 𝑎 + 1, · · · , 𝑏}. Denote by 1{·} the indicator function. The function | · |+ maps a real number

𝑧 ∈ R to max{0, 𝑧}.

2.1 Probability
We use the bold letter F = {𝐹 𝑗 } 𝑗 ∈[𝑛] to denote an instance (namely an 𝑛-dimensional product

distribution), where 𝐹 𝑗 is the bid distribution of the buyer 𝑗 ∈ [𝑛]. For ease of notation, 𝐹 𝑗 also
represents the corresponding cumulative density function (CDF).

We assume the CDF’s {𝐹 𝑗 } 𝑗 ∈[𝑛] to be left-continuous, in the sense that when the 𝑗-th buyer has

a random bid 𝑏 𝑗 ∼ 𝐹 𝑗 for a price-𝑝 item, his willing-to-pay probability is Pr[𝑏 𝑗 ≥ 𝑝] rather than
Pr[𝑏 𝑗 > 𝑝]. We also define the inverse CDF 𝐹−1𝑗 (𝑦) def

= inf{𝑥 ∈ R≥0 : 𝐹 𝑗 (𝑥) ≥ 𝑦} for any 𝑦 ∈ [0, 1];
notice that possibly 𝐹−1𝑗 (1) = ∞. We say a distribution 𝐹 𝑗 stochastically dominates another 𝐹 𝑗 , when

𝐹 𝑗 (𝑥) ≤ 𝐹 𝑗 (𝑥) for all 𝑥 ∈ R≥0. Further, an instance F = {𝐹 𝑗 } 𝑗 ∈[𝑛] dominates another instance

F = {𝐹 𝑗 } 𝑗 ∈[𝑛] , when 𝐹 𝑗 dominates 𝐹 𝑗 for each 𝑗 ∈ [𝑛].
For a CDF 𝐹 𝑗 , we are also interested in two associated parameters (𝑣 𝑗 , 𝑞 𝑗 ). Themonopoly quantile

𝑞 𝑗 ∈ [0, 1] and the monopoly price 𝑣 𝑗 ∈ R≥0 are respectively given by

𝑞 𝑗
def

= argmax

𝑞∈[0,1]
{𝐹−1𝑗 (1 − 𝑞) · 𝑞} and 𝑣 𝑗

def

= 𝐹−1𝑗 (1 − 𝑞 𝑗 ).

If there are multiple maximizers 𝑞 𝑗 , we would choose the smallest 𝑞 𝑗 among the alternatives; notice

that possibly 𝑞 𝑗 = 0 and 𝑣 𝑗 = ∞.

Sampling a bid profile from the instance b = (𝑏 𝑗 ) 𝑗 ∈[𝑛] ∼ F, the 𝑖-th highest bids (for 𝑖 ∈ [𝑛])
𝑏 (1) ≥ · · · ≥ 𝑏 (𝑖) ≥ · · · ≥ 𝑏 (𝑛) will be of particular interest. We denote by 𝐷𝑖 the corresponding

distributions/CDF’s, namely 𝐷𝑖 (𝑥) = Pr[𝑏 (𝑖) < 𝑥] for all 𝑥 ∈ R≥0. Again, we assume {𝐷𝑖 }𝑖∈[𝑛] to
be left-continuous. The formulas for the 𝑖-th highest CDF’s are given below.

Fact 1 (Order Statistics). For each 𝑖 ∈ [𝑛 + 1], the 𝑖-th highest CDF is given by

𝐷𝑖 (𝑥) =
∑

𝑡 ∈[0:𝑖−1]

∑
|𝑊 |=𝑡

(∏
𝑗∉𝑊

Pr[𝑏 𝑗 < 𝑥]
)
·
( ∏
𝑗 ∈𝑊

Pr[𝑏 𝑗 ≥ 𝑥]
)

=
∑

𝑡 ∈[0:𝑖−1]

∑
|𝑊 |=𝑡

(∏
𝑗∉𝑊

𝐹 𝑗 (𝑥)
)
·
( ∏
𝑗 ∈𝑊

(1 − 𝐹 𝑗 (𝑥))
)
, ∀𝑥 ≥ 0.

Regular distribution. Denote by Reg this distribution family. According to [39], a distribution

is regular 𝐹 𝑗 ∈ Reg if and only if the virtual value function 𝜑 𝑗 (𝑥)
def

= 𝑥 − 1−𝐹 𝑗 (𝑥)
𝑓𝑗 (𝑥) is non-decreasing

on the support of 𝐹 𝑗 , where 𝑓𝑗 is the probability density function (PDF). Such a regular CDF 𝐹 𝑗 is

illustrated in Figure 3a.

Triangle distribution. This distribution family, denoted by Tri, is introduced in [3] and is a

subset of the regular distribution family Reg. Such a distribution Tri(𝑣 𝑗 , 𝑞 𝑗 ) is determined by the

monopoly price 𝑣 𝑗 ∈ R≥0 and the monopoly quantile 𝑞 𝑗 ∈ [0, 1]. In precise, the corresponding CDF

 
Technical Program Presentation ∙ EC '21, July 18–23, 2021, Budapest, Hungary

663



𝐹 𝑗 (𝑥)

𝑥
𝑣 𝑗

1

0

1 − 𝑞 𝑗

(a) The CDF of a regular 𝐹 𝑗

𝐹 𝑗 (𝑥)

𝑥
𝑣 𝑗

1

0

1 − 𝑞 𝑗

(b) The CDF of Tri(𝑣 𝑗 , 𝑞 𝑗 )

Fig. 3. Demonstration for the regular distribution and the triangle distribution.

is given below and is illustrated in Figure 3b.

𝐹 𝑗 (𝑥)
def

=

{ (1−𝑞 𝑗 ) ·𝑥
(1−𝑞 𝑗 ) ·𝑥+𝑣𝑗𝑞 𝑗

, ∀𝑥 ∈ [0, 𝑣 𝑗 ]
1, ∀𝑥 ∈ (𝑣 𝑗 ,∞)

.

2.2 Mechanisms
We focus on such a revenue maximization scenario: the seller has 𝑘 ∈ N≥1 homogeneous items and

faces 𝑛 ≥ 𝑘 unit-demand buyers, and the buyers draw their bids b = {𝑏 𝑗 } 𝑗 ∈[𝑛] ∼ F independently

from a publicly known product distribution F = {𝐹 𝑗 } 𝑗 ∈[𝑛] . For convenience, we interchange

buyer/bidder.

In the bulk of the work, we will concern three mechanisms: Anonymous Pricing, Anonymous

Reserve, and Ex-Ante Relaxation. Below we briefly introduce these mechanisms; for more details,

the reader can refer to [27, Chapter 4].

Anonymous Pricing. In such a mechanism, the seller posts an a priori price 𝑝 ∈ R≥0 to any single
item; then in an arbitrary coming order, each of the first 𝑘 coming buyers that are willing to pay

the price 𝑝 ∈ R≥0, will get an item by paying this price. Given any bid profile b ∼ F, let 𝑏 (𝑛+1)
def

= 0

and reorder the bids such that 𝑏 (1) ≥ · · · ≥ 𝑏 (𝑖) ≥ · · · ≥ 𝑏 (𝑛+1) .
Depending on how many bids exceed the posted price, the mechanism gives a revenue of

Rev(AP) =
∑
𝑖∈[𝑘 ]

𝑖 · 𝑝 · 1{𝑏 (𝑖) ≥ 𝑝 > 𝑏 (𝑖+1) } + 𝑘 · 𝑝 · 1{𝑏 (𝑘+1) ≥ 𝑝}

=
∑
𝑖∈[𝑘 ]

𝑝 · 1{𝑏 (𝑖) ≥ 𝑝}.

Taking the randomness over b ∼ F into account results in the expected revenue.

Fact 2 (Revenue Formula for Anonymous Pricing). Under any posted price 𝑝 ∈ R≥0, the Anonymous

Pricing mechanism extracts an expected revenue of

AP(𝑝, F) def

= 𝑝 ·
∑
𝑖∈[𝑘 ]

(1 − 𝐷𝑖 (𝑝)).

Let AP(F) def

= max𝑝∈R≥0 {AP(𝑝, F)} denote the optimal Anonymous Pricing revenue.
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Anonymous Reserve. In such a mechanism, the seller sets an a priori reserve 𝑟 ∈ R≥0 on any

single item. When at most 𝑘 bidders are willing to pay the reserve 𝑟 ∈ R≥0, Anonymous Reserve

has the same allocation/payment rule as Anonymous Pricing, thus the same revenue. But when at

least (𝑘 + 1) bidders are willing to pay this reserve, each of the top-𝑘 bidders (with an arbitrary

tie-breaking rule) wins an item by paying the (𝑘 + 1)-th highest bid 𝑏 (𝑘+1) ≥ 𝑟 .

Running on a specific bid profile b ∼ F, the mechanism generates a revenue of

Rev(AR) =
∑
𝑖∈[𝑘 ]

𝑖 · 𝑟 · 1{𝑏 (𝑖) ≥ 𝑟 > 𝑏 (𝑖+1) } + 𝑘 · 𝑏 (𝑘+1) · 1{𝑏 (𝑘+1) ≥ 𝑟 }

=
∑
𝑖∈[𝑘 ]

𝑟 · 1{𝑏 (𝑖) ≥ 𝑟 } + 𝑘 · |𝑏 (𝑘+1) − 𝑟 |+.

Taking the randomness over b ∼ F into account gives the expected revenue. (Note that [10, Fact 1]

get the revenue formula below in the single-item case 𝑘 = 1.)

Fact 3 (Revenue Formula for Anonymous Reserve [10, Fact 1]). Under any reserve 𝑟 ∈ R≥0, the
Anonymous Reserve mechanism extracts an expected revenue of

AR(𝑟, F) def

= 𝑟 ·
∑
𝑖∈[𝑘 ]

(1 − 𝐷𝑖 (𝑟 )) + 𝑘 ·
∫ ∞

𝑟

(1 − 𝐷𝑘+1(𝑥)) · d𝑥 .

Let AR(F) def

= max𝑟 ∈R≥0 {AR(𝑟, F)} denote the optimal Anonymous Reserve revenue.

Ex-Ante Relaxation. This notion is introduced by [11]. Although just being a “fake” mechanism,
5

Ex-Ante Relaxation is useful to upper bound the revenue from the optimal truthful mechanism,

Myerson Auction.

For a regular instance, an Ex-Ante Relaxation mechanism is specified by an allocation rule

q′ = {𝑞′𝑗 } 𝑗 ∈[𝑛] ∈ [0, 1]𝑛 . Here, each 𝑞′𝑗 ∈ [0, 1] represents the probability that the buyer 𝑗 ∈ [𝑛]
wins an item. This allocation rule is feasible iff

∑
𝑗 ∈[𝑛] 𝑞

′
𝑗 ≤ 𝑘 , because we only have 𝑘 items. The

following fact characterizes the resulting “revenue”.

Fact 4 (Revenue Formula for Ex-Ante Relaxation [11, Lemma 2]). Given a regular instance F =

{𝐹 𝑗 } 𝑗 ∈[𝑛] , under any feasible allocation rule q′ = {𝑞′𝑗 } 𝑗 ∈[𝑛] ∈ [0, 1]𝑛 that

∑
𝑗 ∈[𝑛] 𝑞

′
𝑗 ≤ 𝑘 , the Ex-Ante

Relaxation mechanism extracts an expected revenue of

EAR(q′, F) def

=
∑
𝑗 ∈[𝑛]

𝐹−1𝑗 (1 − 𝑞′𝑗 ) · 𝑞′𝑗

Remark 1. We will study the Ex-Ante Relaxation mechanism just for the regular instances. The

revenue formulas for the irregular instances are more complicated, for which the reader can refer

to [11, Lemma 2].

Revenue monotonicity. Based on the revenue formulas given in Facts 2 to 4, one can easily check

the following fact (a.k.a. the revenue monotonicity in the literature).

Fact 5 (Revenue Monotonicity). Given that an instance F = {𝐹 𝑗 } 𝑗 ∈[𝑛] stochastically dominates

another instance F = {𝐹 𝑗 } 𝑗 ∈[𝑛] , the following hold:
(1) AP(𝑝, F) ≥ AP(𝑝, F) for any posted price 𝑝 ∈ R≥0, and thus AP(F) ≥ AP(F).
(2) AR(𝑟, F) ≥ AR(𝑟, F) for any reserve 𝑟 ∈ R≥0, and thus AR(F) ≥ AR(F).
(3) EAR(q′, F) ≥ EAR(q′, F) for any allocation q′ = {𝑞′𝑗 } 𝑗 ∈[𝑛] ∈ [0, 1]𝑛 with

∑
𝑗 ∈[𝑛] 𝑞

′
𝑗 ≤ 𝑘 .

5
Namely, in the concerning Bayesian mechanism design setting, Ex-Ante Relaxation is unimplementable.
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3 EX-ANTE RELAXATION VS. ANONYMOUS PRICING
In this section, we investigate the Ex-Ante Relaxation (EAR) vs. Anonymous Pricing (AP) problem,

under the regularity assumption that F = {𝐹 𝑗 } 𝑗 ∈[𝑛] ⊆ Reg. Based on the revenue formulas (see

Section 2.2), the revenue gap between both mechanisms is given by the optimal solution to the

following mathematical program. Recall that 𝐷𝑖 is the 𝑖-th highest bid distribution, and Reg is the

family of all regular distributions.

sup EAR(q′, F) =
∑
𝑗 ∈[𝑛]

𝐹−1𝑗 (1 − 𝑞′𝑗 ) · 𝑞′𝑗 (P2)

s.t. AP(𝑝, F) = 𝑝 ·
∑
𝑖∈[𝑘 ]

(1 − 𝐷𝑖 (𝑝)) ≤ 1, ∀𝑝 ∈ R≥0,∑
𝑗 ∈[𝑛]

𝑞′𝑗 ≤ 𝑘,

q′ = {𝑞′𝑗 } 𝑗 ∈[𝑛] ∈ [0, 1]𝑛, F = {𝐹 𝑗 } 𝑗 ∈[𝑛] ⊆ Reg, ∀𝑛 ∈ N≥1 .

We will establish an 𝑂 (log𝑘) upper bound for the optimal solution to Program (P2), which is

formalized as Theorem 3. Combine this result with the matching lower bound by [28, Example 5.4],

then the revenue gap gets understood.

Theorem 3 (EAR vs. AP). Given that the seller has 𝑘 ∈ N≥1 homogeneous items and faces 𝑛 ≥ 𝑘

independent unit-demand buyers, who have regular value distributions F = {𝐹 𝑗 } 𝑗 ∈[𝑛] ⊆ Reg, the

revenue gap between Ex-Ante Relaxation and Anonymous Pricing isℜEAR/AP(𝑘) = Θ(log𝑘).

Remark 2. We notice that under the stronger monotone-hazard-rate (MHR) distributional assump-

tion, the EAR vs. AP revenue gap is still Θ(log𝑘). In particular, the 𝑂 (log𝑘) upper bound follows

from Theorem 3 by implication, and the Ω(log𝑘) lower-bound instance by [28, Example 5.4] indeed

satisfies the MHR condition.

We establish Theorem 3 in three steps. First, we give a reduction from a regular instance to a

triangle instance, which preserves the feasibility; then we just need to optimize 𝑛 pairs of monopoly

price and quantile {(𝑣 𝑗 , 𝑞 𝑗 )} 𝑗 ∈[𝑛] instead of 𝑛 regular distributions {𝐹 𝑗 } 𝑗 ∈[𝑛] . Second, we relax the
constraint AP(𝑝, F) ≤ 1 to a more tractable constraint, which avoids the correlation among the

order statistics {𝐷𝑖 }𝑖∈[𝑘 ] . Afterwards, we divide all buyers into three careful groups under certain

criteria for {(𝑣 𝑗 , 𝑞 𝑗 )} 𝑗 ∈[𝑛] , and separately bound the contribution from each group to the EAR

revenue. The total EAR revenue turns out to be 𝑂 (log𝑘).

Reduction to triangle instances. For the single-item case 𝑘 = 1, [3] show that the worst case of

Program (P2) w.l.o.g. is achieved by a triangle instance. Indeed, their arguments work in the general

case 𝑘 ∈ N≥1 as well. Formally, we have the following lemma (see Figure 4 for a demonstration).

Lemma1 (Reduction for EAR vs.AP [3, Lemma 4.1]). Given a feasible solution (q′, F) to Program (P2),

there exists another 𝑛-buyer feasible instance (q∗, F∗) such that:

(1) The distributions F∗ = {𝐹 ∗𝑗 } 𝑗 ∈[𝑛] ⊆ Tri are triangle distributions, and q∗ = {𝑞∗𝑗 } 𝑗 ∈[𝑛] ∈ [0, 1]𝑛
(such that

∑
𝑗 ∈[𝑛] 𝑞

∗
𝑗 ≤ 𝑘) are the monopoly quantiles thereof.

(2) The Ex-Ante Relaxation revenue keeps the same, i.e. EAR(q∗, F∗) = EAR(q′, F).
(3) The distributions F∗ = {𝐹 ∗𝑗 } 𝑗 ∈[𝑛] are stochastically dominated by F = {𝐹 𝑗 } 𝑗 ∈[𝑛] and thus, for

any price 𝑝 ∈ R≥0, the Anonymous Pricing revenue drops, i.e. AP(𝑝, F∗) ≤ AP(𝑝, F).

In view of Lemma 1, to establish Theorem 3 we can focus on Program (P3) in place of the previous

Program (P2). For a triangle distribution Tri(𝑣 𝑗 , 𝑞 𝑗 ), where 𝑣 𝑗 = 𝐹−1𝑗 (1 − 𝑞 𝑗 ) ≥ 0 is the monopoly
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𝑅(𝑞)

𝑞
0

𝑅 𝑗 (𝑞)

1𝑞∗𝑗 = 1 − 𝐹 𝑗 (𝑣∗𝑗 )

𝑅 𝑗 (𝑞∗𝑗 )

(a) A concave revenue-quantile curve

𝑅(𝑞)

𝑞
0

𝑅∗
𝑗 (𝑞)

1𝑞∗𝑗 = 1 − 𝐹 𝑗 (𝑣∗𝑗 )

𝑣∗𝑗𝑞
∗
𝑗

(b) A triangular revenue-quantile curve

Fig. 4. Demonstration for the reduction in Lemma 1, in terms of the revenue-quantile curves. For a distribution
𝐹 𝑗 , its revenue-quantile curve is given by 𝑅 𝑗 (𝑞) = 𝑞 · 𝐹−1

𝑗
(1−𝑞) for 𝑞 ∈ [0, 1]. This distribution 𝐹 𝑗 is regular iff

the 𝑅 𝑗 is a concave function (as Figure 4a suggests). And the revenue-quantile curve of a triangle distribution

is basically a triangle (i.e., a 2-piecewise linear function, as Figure 4b suggests); in particular, the two base

angles have the tangent values 𝑣∗
𝑗
and 𝑣∗

𝑗
𝑞∗
𝑗
/(1 − 𝑞∗

𝑗
), respectively.

price, we reuse 𝐹 𝑗 to denote its CDF. Recall Section 2.1 that 𝐹 𝑗 (𝑥) =
(1−𝑞 𝑗 ) ·𝑥

(1−𝑞 𝑗 ) ·𝑥+𝑣𝑗𝑞 𝑗
for all 𝑥 ≤ 𝑣 𝑗 and

𝐹 𝑗 (𝑥) = 1 for all 𝑥 > 𝑣 𝑗 .

sup EAR(F) =
∑
𝑗 ∈[𝑛]

𝑣 𝑗𝑞 𝑗 (P3)

s.t. AP(𝑝, F) = 𝑝 ·
∑
𝑖∈[𝑘 ]

(1 − 𝐷𝑖 (𝑝)) ≤ 1, ∀𝑝 ∈ R≥0, (C2)∑
𝑗 ∈[𝑛]

𝑞 𝑗 ≤ 𝑘, (C3)

F = {Tri(𝑣 𝑗 , 𝑞 𝑗 )} 𝑗 ∈[𝑛] ⊆ Reg, ∀𝑛 ∈ N≥1.

For a single triangle distribution Tri(𝑣 𝑗 , 𝑞 𝑗 ), the optimal Anonymous Pricing revenue from it equals

AP(Tri(𝑣 𝑗 , 𝑞 𝑗 )) = 𝑣 𝑗𝑞 𝑗 , which ≤ AP(F) ≤ 1 due to constraint (C2). We thus add one more constraint

𝑣 𝑗𝑞 𝑗 ≤ 1, ∀𝑗 ∈ [𝑛] . (C4)

Relaxing constraint (C2). Given Program (P3), both the objective function EAR(F) and con-

straint (C3) are easy to deal with. However, constraint (C2) is rather complicated, because it

involves the correlated top-𝑘 bids {𝑏 (𝑖) }𝑖∈[𝑘 ] and the corresponding order CDF’s {𝐷𝑖 }𝑖∈[𝑘 ] (as
formulas of the individual CDF’s {𝐹 𝑗 } 𝑗 ∈[𝑛] ) are cumbersome.

The following Lemma 2 relaxes constraint (C2) to another constraint. The resulting constraint

is much easier to reason about. Namely, it avoids the correlation among the top-𝑘 bids {𝑏 (𝑖) }𝑖∈[𝑘 ]
and admits a clean formula of the individual CDF’s {𝐹 𝑗 } 𝑗 ∈[𝑛] . Later we will see that after this

relaxation, the optimal objective value of Program (P3) blows up just by a constant multiplicative

factor. Denote𝑚
def

= ⌊ 𝑘
2
⌋ ≥ 2 for convenience.

Lemma 2 (Relaxed Constraint). The following is a necessary condition for constraint (C2):∑
𝑗 ∈[𝑛]

(1 − 𝐹 𝑗 (𝑝)) ≤ 4

𝑝
, ∀𝑝 ∈

[
1

𝑚
,
1

2

]
.
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Proof of Lemma 2. Let us consider a specific price 𝑝 ∈ [ 1

𝑚
, 1
2
] for constraint (C2). For any

𝑗 ∈ [𝑛], let the independent Bernoulli random variable 𝑋 𝑗 ∈ {0, 1} denote whether the 𝑗-th buyer

is willing to pay the price 𝑝 , with the failure probability Pr[𝑋 𝑗 = 0] = 𝐹 𝑗 (𝑝). Then 𝑋
def

=
∑

𝑗 ∈[𝑛] 𝑋 𝑗

denotes how many buyers are willing to pay, and 𝑌
def

= min{𝑘,𝑋 } denotes how many items are sold

out in Anonymous Pricing.

We have the revenue AP(𝑝, F) = 𝑝 · E[𝑌 ], and constraint (C2) is identical to E[𝑌 ] ≤ 1

𝑝
. For the

equation given in Lemma 2, the LHS =
∑

𝑗 ∈[𝑛] Pr[𝑋 𝑗 = 1] = ∑
𝑗 ∈[𝑛] E[𝑋 𝑗 ] = E[𝑋 ].

On the opposite of Lemma 2, suppose that E[𝑋 ] > 4

𝑝
. We have E[𝑋 ] > 8, given that the price

𝑝 ≤ 1

2
. Since 𝑋 is the sum of independent Bernoulli random variables, due to Chernoff bound,

Pr[𝑋 < (1 − 𝛿) · E[𝑋 ]] < 𝑒−𝛿 ·E[𝑋 ]

(1−𝛿) (1−𝛿 ) ·E[𝑋 ] for any 𝛿 ∈ (0, 1). In particular,

Pr

[
𝑋 <

1

2

· E[𝑋 ]
]
<

(
2

𝑒

) 1

2
·E[𝑋 ]

<

(
2

𝑒

)
4

≈ 0.2931 <
1

2

, (1)

where the first step follows by setting 𝛿 = 1

2
; and the second step follows since E[𝑋 ] > 8.

And because 𝑌 = min{𝑘,𝑋 }, we further deduce that

Pr

[
𝑌 ≥ min

{
𝑘,

1

2

· E[𝑋 ]
}]

= 1 − Pr

[
𝑌 < min

{
𝑘,

1

2

· E[𝑋 ]
}]

= 1 − Pr

[
𝑋 < min

{
𝑘,

1

2

· E[𝑋 ]
}]

≥ 1 − Pr

[
𝑋 <

1

2

· E[𝑋 ]
]

>
1

2

, (2)

where the second step follows since 𝑌 < min{𝑘, 1
2
· E[𝑋 ]} holds only if 𝑌 < 𝑘 , and thus only if

𝑌 = 𝑋 ; and the last step follows from Equation (1).

Based on the above arguments, we conclude a contradiction E[𝑌 ] > 1

𝑝
as follows:

E[𝑌 ] ≥ Pr

[
𝑌 ≥ min

{
𝑘,

1

2

· E[𝑋 ]
}]

· min

{
𝑘,

1

2

· E[𝑋 ]
}

>
1

2

·min

{
𝑘,

1

2

· E[𝑋 ]
}

≥ 1

2

·min

{
𝑘,

2

𝑝

}
≥ 1

𝑝
,

where the second step applies Equation (2); the third step applies our assumption E[𝑋 ] > 4

𝑝
; and

the last step follows as
2

𝑝
≤ 2𝑚 ≤ 𝑘 , given that 𝑝 ∈ [ 1

𝑚
, 1
2
] and𝑚 = ⌊ 𝑘

2
⌋.

By refuting the assumption, we get E[𝑋 ] ≤ 4

𝑝
for any price 𝑝 ∈ [ 1

𝑚
, 1
2
]. This completes the proof

of Lemma 2. □

Given a triangle instance {Tri(𝑣 𝑗 , 𝑞 𝑗 )} 𝑗 ∈[𝑛] , by plugging the CDF formulas {𝐹 𝑗 } 𝑗 ∈[𝑛] , we can
reformulate Lemma 2 as follows:∑

𝑗 ∈[𝑛]:𝑣𝑗 ≥𝑝

𝑣 𝑗𝑞 𝑗

(1 − 𝑞 𝑗 ) · 𝑝 + 𝑣 𝑗𝑞 𝑗

≤ 4

𝑝
, ∀𝑝 ∈

[
1

𝑚
,
1

2

]
. (C2

′
)
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Grouping the buyers. To upper bound the objective function EAR(F) = ∑
𝑗 ∈[𝑛] 𝑣 𝑗𝑞 𝑗 , let us parti-

tion all the buyers into three groups [𝑛] = 𝐴 ⊔ 𝐵 ⊔𝐶 , where

𝐴
def

=

{
𝑗 ∈ [𝑛] : 𝑣 𝑗 ≥

1

𝑚
and

𝑣 𝑗𝑞 𝑗

1 − 𝑞 𝑗

≥ 1

𝑚

}
,

𝐵
def

=

{
𝑗 ∈ [𝑛] : 𝑣 𝑗 ≥

1

𝑚
and

𝑣 𝑗𝑞 𝑗

1 − 𝑞 𝑗

<
1

𝑚

}
,

𝐶
def

=

{
𝑗 ∈ [𝑛] : 𝑣 𝑗 <

1

𝑚

}
.

Regarding the groups 𝐴, 𝐵 and 𝐶 given above, their individual contributions to the benchmark

EAR(F) actually admit the following bounds:∑
𝑗 ∈𝐴

𝑣 𝑗𝑞 𝑗 = 𝑂 (log𝑘),
∑
𝑗 ∈𝐵

𝑣 𝑗𝑞 𝑗 ≤ 8,
∑
𝑗 ∈𝐶

𝑣 𝑗𝑞 𝑗 ≤ 3.

Suppose these bounds to be true, then combining them together immediately gives Theorem 3.

Below we explain the intuitions of our grouping criteria (Remark 3), give an interesting observation

for the instances that are constituted by “small” distributions (Remark 4), and then verify the above

three bounds in the reverse order.

Remark 3 (Grouping Criteria). Recall the objective function of Program (P3), i.e., EAR(F) =∑
𝑗 ∈[𝑛] 𝑣 𝑗𝑞 𝑗 , and constraint (C3), i.e.,

∑
𝑗 ∈[𝑛] 𝑞 𝑗 ≤ 𝑘 . Here the monopoly revenues {𝑣 𝑗𝑞 𝑗 } 𝑗 ∈[𝑛]

are the individual contributions by the triangle distributions {Tri(𝑣 𝑗 , 𝑞 𝑗 )} 𝑗 ∈[𝑛] , and (in the sense

of the Knapsack Problem) the monopoly quantiles {𝑞 𝑗 } 𝑗 ∈[𝑛] can be regarded as the individual

capacities. Thereby, the monopoly prices {𝑣 𝑗 } 𝑗 ∈[𝑛] somehow are the bang-per-buck ratios (i.e., the

contribution to the EAR benchmark per unit of the capacity).

Of course we prefer those distributions with higher bang-per-buck ratios {𝑣 𝑗 } 𝑗 ∈[𝑛] , but also need
to take the capacities {𝑞 𝑗 } 𝑗 ∈[𝑛] into account. In particular:

• The group-𝐶 distributions have lower bang-per-buck ratios 𝑣 𝑗 ≤ 1/𝑚. So conceivably, the

total contribution

∑
𝑗 ∈𝐶 𝑣 𝑗𝑞 𝑗 by this group to the EAR benchmark shall be small, and we will

prove an upper bound of 3.

• The group-𝐵 distributions have high enough bang-per-buck ratios 𝑣 𝑗 ≥ 1/𝑚 but small

capacities, namely 𝑣 𝑗𝑞 𝑗/(1 − 𝑞 𝑗 ) < 1/𝑚. It turns out that the total contribution

∑
𝑗 ∈𝐵 𝑣 𝑗𝑞 𝑗 by

this group is also small, and we will prove an upper bound of 8.

• The group-𝐴 distributions have high enough bang-per-buck ratios as well as big enough

capacities. Thus, this group should contribute the most to the EAR benchmark, for which we

will show

∑
𝑗 ∈𝐴 𝑣 𝑗𝑞 𝑗 = 𝑂 (log𝑘).

Indeed, our grouping criteria borrow ideas from the “budget-feasible mechanism design” literature

[12, 24, 40], where the primary goal is to design approximately optimal mechanisms for the Knapsack

Problem under the incentive concerns.

Remark 4 (“Small” Distributions). As argued in Section 1.2, regarding a continuum of “small” buyers

(i.e., any single buyer has an infinitesimal contribution to the EAR benchmark, but there are infinitely

many buyers 𝑛 → ∞), the EAR vs. AP revenue gap would be (at most) a universal constant for

whatever 𝑘 ≥ 1. This is because every “small” buyer belongs to either group 𝐵 or group𝐶 , and thus

the EAR benchmark is at most

∑
𝑗 ∈𝐵∪𝐶 𝑣 𝑗𝑞 𝑗 ≤ 8 + 3 = 11.

Revenue from group 𝐶. Since such a buyer 𝑗 ∈ 𝐶 has a monopoly price 𝑣 𝑗 <
1

𝑚
, we have∑

𝑗 ∈𝐶
𝑣 𝑗𝑞 𝑗 ≤ 1

𝑚
·
∑
𝑗 ∈𝐶

𝑞 𝑗 ≤ 1

𝑚
·
∑
𝑗 ∈[𝑛]

𝑞 𝑗 ≤ 1

𝑚
· 𝑘 ≤ 3,
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where the second step follows since 𝐶 ⊆ [𝑛]; the third step follows from constraint (C3); and the

last step holds for𝑚 = ⌊ 𝑘
2
⌋ and 𝑘 ≥ 4. (We will deal with the cases 𝑘 ∈ {1, 2, 3} separately, at the

end of this section.)

Revenue from group 𝐵. Setting 𝑝 = 1

𝑚
for constraint (C2

′
), we deduce that

4𝑚 = RHS of (C2
′
) ≥ LHS of (C2

′
) =

∑
𝑗 ∈[𝑛]:𝑣𝑗 ≥ 1

𝑚

𝑣 𝑗𝑞 𝑗

(1 − 𝑞 𝑗 ) · 1

𝑚
+ 𝑣 𝑗𝑞 𝑗

≥
∑
𝑗 ∈𝐵

𝑣 𝑗𝑞 𝑗

(1 − 𝑞 𝑗 ) · 1

𝑚
+ 𝑣 𝑗𝑞 𝑗

≥
∑
𝑗 ∈𝐵

𝑣 𝑗𝑞 𝑗

(1 − 𝑞 𝑗 ) · 1

𝑚
+ (1 − 𝑞 𝑗 ) · 1

𝑚

≥ 𝑚

2

·
∑
𝑗 ∈𝐵

𝑣 𝑗𝑞 𝑗 ,

where the second line follows since { 𝑗 ∈ [𝑛] : 𝑣 𝑗 ≥ 1

𝑚
} ⊇ 𝐵 (see the definition of 𝐵); the third line

follows since
𝑣𝑗𝑞 𝑗

1−𝑞 𝑗
< 1

𝑚
for any 𝑗 ∈ 𝐵; and the last line drops the (1−𝑞 𝑗 ) terms and then rearranges

the formula.

Rearranging the above equation immediately gives

∑
𝑗 ∈𝐵 𝑣 𝑗𝑞 𝑗 ≤ 8, as desired.

Revenue from group 𝐴. To verify the upper bound about this group, we shall generalize the

definition of 𝐴, and get a chain of subgroups 𝐴 = 𝐴𝑚 ⊇ 𝐴𝑚−1 ⊇ · · · ⊇ 𝐴2:

𝐴𝑡
def

=

{
𝑗 ∈ [𝑛] : 𝑣 𝑗 ≥

1

𝑡
and

𝑣 𝑗𝑞 𝑗

1 − 𝑞 𝑗

≥ 1

𝑡

}
, ∀𝑡 ∈ [2 :𝑚] .

Given an index 𝑡 ∈ [2 :𝑚], by setting 𝑝 = 1

𝑡
∈ [ 1

𝑚
, 1
2
] for constraint (C2′), we deduce that

4𝑡 = RHS of (C2
′
) ≥ LHS of (C2

′
) =

∑
𝑗 ∈[𝑛]:𝑣𝑗 ≥ 1

𝑡

𝑣 𝑗𝑞 𝑗

(1 − 𝑞 𝑗 ) · 1

𝑡
+ 𝑣 𝑗𝑞 𝑗

≥
∑
𝑗 ∈𝐴𝑡

𝑣 𝑗𝑞 𝑗

(1 − 𝑞 𝑗 ) · 1

𝑡
+ 𝑣 𝑗𝑞 𝑗

≥
∑
𝑗 ∈𝐴𝑡

𝑣 𝑗𝑞 𝑗

𝑣 𝑗𝑞 𝑗 + 𝑣 𝑗𝑞 𝑗

=
1

2

· |𝐴𝑡 |,

where the second step follows because { 𝑗 ∈ [𝑛] : 𝑣 𝑗 ≥ 1

𝑚
} ⊇ 𝐴𝑡 (see the definition of 𝐴𝑡 ); and the

third step follows because (1 − 𝑞 𝑗 ) · 1

𝑡
≤ 𝑣 𝑗𝑞 𝑗 for each 𝑗 ∈ 𝐴𝑡 .

Based on the above equation, we easily bound the cardinality |𝐴𝑡 | ≤ 8𝑡 for each 𝑡 ∈ [2 : 𝑚].
Combining the above arguments together gives∑

𝑗 ∈𝐴
𝑣 𝑗𝑞 𝑗 =

∑
𝑗 ∈𝐴𝑚

𝑣 𝑗𝑞 𝑗 =
∑
𝑗 ∈𝐴2

𝑣 𝑗𝑞 𝑗 +
∑

𝑡 ∈[3:𝑚]

∑
𝑗 ∈𝐴𝑡 \𝐴𝑡−1

𝑣 𝑗𝑞 𝑗

≤
∑
𝑗 ∈𝐴2

𝑣 𝑗𝑞 𝑗 +
∑

𝑡 ∈[3:𝑚]

∑
𝑗 ∈𝐴𝑡 \𝐴𝑡−1

1

𝑡 − 1

· 1

=
∑
𝑗 ∈𝐴2

𝑣 𝑗𝑞 𝑗 +
∑

𝑡 ∈[3:𝑚]

|𝐴𝑡 | − |𝐴𝑡−1 |
𝑡 − 1
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=

( ∑
𝑗 ∈𝐴2

𝑣 𝑗𝑞 𝑗 −
|𝐴2 |
2

)
+ |𝐴𝑚 |
𝑚 − 1

+
∑

𝑡 ∈[3:𝑚]
|𝐴𝑡 | ·

(
1

𝑡 − 1

− 1

𝑡

)
≤

( ∑
𝑗 ∈𝐴2

𝑣 𝑗𝑞 𝑗 −
|𝐴2 |
2

)
+ 8𝑚

𝑚 − 1

+
∑

𝑡 ∈[3:𝑚]
8𝑡 ·

(
1

𝑡 − 1

− 1

𝑡

)
≤

( ∑
𝑗 ∈𝐴2

𝑣 𝑗𝑞 𝑗 −
|𝐴2 |
2

)
+ 16 +

∑
𝑡 ∈[3:𝑚]

8𝑡 ·
(

1

𝑡 − 1

− 1

𝑡

)
=

( ∑
𝑗 ∈𝐴2

𝑣 𝑗𝑞 𝑗 −
|𝐴2 |
2

)
+ 8 +

∑
𝑡 ∈[𝑚−1]

8

𝑡
, (3)

where the second line follows because the monopoly price 𝑣 𝑗 ∈ ( 1

𝑡−1 ,
1

𝑡
] for each 𝑗 ∈ 𝐴𝑡 \𝐴𝑡−1 (see

the definitions of 𝐴𝑡 and 𝐴𝑡−1), and the monopoly quantiles 𝑞 𝑗 ∈ [0, 1] are bounded; the fifth line

applies the bounds |𝐴𝑡 | ≤ 8𝑡 for each 𝑡 ∈ [2 :𝑚]; the sixth line holds for𝑚 = ⌊ 𝑘
2
⌋ and 𝑘 ≥ 4; and

the last line is by elementary calculation.

Because 𝑣 𝑗𝑞 𝑗 ≤ 1 for all 𝑗 ∈ 𝐴2 (see constraint (C4)) and |𝐴2 | ≤ 16, we can bound the first term

in Equation (3):

∑
𝑗 ∈𝐴2

𝑣 𝑗𝑞 𝑗 − |𝐴2 |
2

≤ |𝐴2 | − |𝐴2 |
2

≤ 8. Plug this into Equation (3):∑
𝑗 ∈𝐴

𝑣 𝑗𝑞 𝑗 ≤ 16 +
∑

𝑡 ∈[𝑚−1]

8

𝑡
= 𝑂 (log𝑘),

where the last step holds for𝑚 = ⌊ 𝑘
2
⌋.

Upper bound when 𝑘 ∈ {1, 2, 3}. Clearly, the optimal valueℜEAR/AP (𝑘) of Program (P2), which

involves 𝑘 ∈ N≥1 items in both mechanisms, is at most the revenue gap between the 𝑘-item Ex-

Ante Relaxation and the 1-item Anonymous Pricing. The later revenue gap is given by the next

mathematical program.

sup

∑
𝑗 ∈[𝑛]

𝐹−1𝑗 (1 − 𝑞′𝑗 ) · 𝑞′𝑗 (P4)

s.t. 𝑝 · (1 − 𝐷1 (𝑝)) ≤ 1, ∀𝑝 ∈ R≥0,∑
𝑗 ∈[𝑛]

𝑞′𝑗 ≤ 𝑘,

q′ = {𝑞′𝑗 } 𝑗 ∈[𝑛] ∈ [0, 1]𝑛, F = {𝐹 𝑗 } 𝑗 ∈[𝑛] ⊆ Reg, ∀𝑛 ∈ N≥1 .

The only difference between Program (P4) and the one in [3, Section 4] is the constraint∑
𝑗 ∈[𝑛] 𝑞

′
𝑗 ≤ 𝑘 (rather than ≤ 1). We can resolve Program (P4) by following the exactly same

steps as in [3, Section 4]. By doing so, we will get

ℜEAR/AP (𝑘) ≤ optimal value of (P4) = 1 + V(Q−1 (𝑘)),

where the functionsV(𝑝) def

= 𝑝 · ln( 𝑝2

𝑝2−1 ) and Q(𝑝) def

= ln( 𝑝2

𝑝2−1 ) −
1

2
·∑∞

𝑡=1 𝑡
−2 · 𝑝−2𝑡 . Then we can

derive Theorem 3 in the case 𝑘 ∈ {1, 2, 3} via numeric calculation, as the next table shows.

𝑘 1 2 3

1 + V(Q−1 (𝑘)) ≈ 2.7184 ≈ 3.7897 ≈ 4.8111
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