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Abstract

An edge cover of a graph is a set of edges such that
every vertex has at least an adjacent edge in it. We
design a very simple deterministic fully polynomial-
time approximation scheme (FPTAS) for counting the
number of edge covers for any graph. Previously,
approximation algorithm is only known for 3 regular
graphs and it is randomized [3]. Our main technique
is correlation decay, which is a powerful tool to design
FPTAS for counting problems. In order to get FPTAS
for general graphs without degree bound, we make use
of a stronger notion called computationally efficient
correlation decay, which was introduced in [19].

1 Introduction

An edge cover of a graph is a set of edges such that
every vertex has at least one adjacent edge in it. For
any graph without isolated vertices, there is at least
one edge cover: the set of all edges. So the decision
problem is trivial. There is also a polynomial time
algorithm based on maximum matching to compute an
edge cover with minimum cardinality. In this paper, we
study the counting version: For a given input graph,
we count the number of edge covers for that graph.
Unlike the decision or optimization problem, counting
edge covers is a #P-complete problem even when we
restrict the input to 3 regular graphs. In this paper,
we study the approximation version. For any given
parameter ǫ > 0, the algorithm outputs a number N̂
such that (1 − ǫ)N ≤ N̂ ≤ (1 + ǫ)N , where N is
the accurate number of edge covers of the input graph.
We also require that the running time of the algorithm
is bounded by poly(n, 1/ǫ), where n is the number
of vertices of the given graph. This is called a fully
polynomial-time approximation scheme (FPTAS). Our
main result of this paper is an FPTAS for counting
edge covers for any graph. Previously, approximation
algorithm was only known for 3 regular graphs and the
algorithm is randomized [3]. The randomized relaxation
of FPTAS is called fully polynomial-time randomized
approximation scheme (FPRAS), which uses random
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bits in the algorithm and requires that the final output
is within the range [(1 − ǫ)N, (1 + ǫ)N ] with high
probability.

Edge cover is related to many other graph problems
such as (perfect) matching, k-factor problems and so
on. All these problems involve a set of edges satisfying
some local constraints defined on each vertex. For
edge cover, it says that at least one incident edge
should be chosen; while for matching, it is at most
one edge. For generic constraints, it is the Holant
framework [6, 7], which is well studied in terms of
exact counting [7, 13, 5], and recently in approximate
counting [29, 24, 22]. For counting matchings, there
is an FPRAS based on Markov Chain Monte Carlo
(MCMC) for any graph [14]. Deterministic FPTAS is
only known for graphs with bounded degree [2]. For
counting perfect matchings, it is a long standing open
question if there is an FPRAS (or FPTAS) for it. For
bipartite graphs, there is an FPRAS for counting perfect
matchings. The weighted version can be viewed as
computing permanent of a non-negative matrix [16].
This is one great achievement of approximate counting.
It is still widely open if there exists an FPTAS for it
or not. The current best deterministic algorithm can
only approximate the permanent with an exponential
large factor [21, 11]. There are many other counting
problems, for which there is an FPRAS and we do
not know if there is an FPTAS or not. In this paper,
we give a complete FPTAS for a problem, for which
even FPRAS was only known for very special family of
instances.

Another view point of the edge cover problem is
read twice monotone CNF formula (Rtw-Mon-CNF):
Each edge is viewed as a Boolean variable and it is
connected with two vertices (read twice); the constraint
on each vertex is exactly a monotone OR constrain
as at least one edge variable is assigned to be True.
Counting number of solutions for a Boolean formula
is another set of interesting problems studied both in
exact counting and approximate counting. One famous
example is the FPRAS for counting the solutions for
a DNF formula [17, 18]. It is an important open
question to derandomize it [27, 12]. Our FPTAS for
counting edge covers can also be viewed as an FPTAS
for counting solutions for a Rtw-Mon-CNF formula. If
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we do not restrict that each variable appears in at most
two constraints, there is no FPTAS or FPRAS unless
NP is equal to P or RP [9].

The common overall approach for designing approx-
imate counting algorithms is to relate counting with
probability distribution. In the context of randomized
counting, this is usually referred as “counting vs sam-
pling” paradigm. If we can compute (or estimate) the
marginal probability, which in our problem is the prob-
ability of a given edge is chosen when we sample an edge
cover uniformly at random, we can in turn approximate
the count. In randomized FPRAS, one estimates the
marginal probability by sampling, and the most suc-
cessful approach is sampling by Markov chain [15]. In
deterministic FPTAS, one calculates the marginal prob-
ability directly, and the most successful approach is cor-
relation decay as introduced in [1] and [28]. We elab-
orate a bit on the ideas. The marginal probability is
estimated using only a local neighborhood around the
edge. To justify the precision of the estimation, we
show that far-away edges have little influence on the
marginal probability. One most successful example is
in anti-ferromagnetic two-spin systems [19, 25, 20], in-
cluding counting independent sets [28]. The correlation
decay based FPTAS is beyond the best known MCMC
based FPRAS and achieves the boundary of approxima-
bility [26, 10]. To the best of our knowledge, that was
the only example for which the best tractable range for
correlation decay based FPTAS exceeds the sampling
based FPRAS. This paper provides another such exam-
ple. FPRAS was the solution concept for approximate
counting [8]. The recent development of correlation de-
cay based FPTAS is changing the picture. It is interest-
ing to investigate the deep relation between these two
approaches.

A number of tools were developed for establish-
ing correlation decay property: self-avoiding walk tree,
computation tree, potential function, dangling instance,
bounded variables and so on. These are something like
coupling argument, canonical path and so on to estab-
lish the rapid mixing property of Markov Chains [15].
Armed with these powerful tools, there are recently
many FPTAS’s designed for various counting prob-
lems [19, 25, 20, 29, 23, 22]. Many of these techniques
are also used in this paper for designing and analyzing
the FPTAS for counting edge covers.

Usually, the correlation decay property only implies
FPTAS for system with bounded degree. The reason is
that we need to explore a local neighborhood with radius
of order log n, then the total running time is nlogn if
there is no degree bound. To overcome this, we make
use of a stronger notion called computationally efficient
correlation decay as introduced in [19]. The observation

is that when we go through a vertex with super-constant
degree, the error is also decreased by a super-constant
rate. Thus we do not need to explore a depth of logn
if the degrees are large. The tradeoff between degree
and decay rate defined by computationally efficient
correlation decay can support FPTAS with unbounded
degree systems. Previously, this notion was only used
in anti-ferromagnetic two-spin systems. In this paper,
we prove that the distribution defined by edge covers
also satisfies this stronger version of correlation decay
and thus we give FPTAS for counting edge covers for
any graph.

2 Preliminaries

An edge cover of a graph is a set of edges such that
every vertex has at least one adjacent edge in it. Given a
graph G = (V,E) with e ∈ E, we use EC(G) to denote
the set of all edge covers of graph G, and P (G, e) to
denote the marginal probability over EC(G) that edge
e is not chosen, or formally, withX ∼ EC(G) uniformly,

(2.1) P (G, e) , P (edge e is not chosen in X)

In this paper, we deal with an extended notion of
undirected graphs where dangling edges and free edges
are allowed.

Definition 2.1. A dangling edge e = (u, ) of a

graph is such singleton edge with exactly one end-point

vertex u, as shown in the Figure 1a.

A free edge e = ( , ) of a graph is such edge with

no end-point vertex.

We use graph to refer graph with or without dan-
gling edges and free edges. Edges in the usual sense (i.e.
neither dangling nor free), will be referred to as normal
edges.

We remark that an alternative view to these combi-
natorial definitions is from Rtw-Mon-CNF. A dangling
edge is simply a variable which only appears at one
clause, and a free edge is a variable that does not ap-
pear at all, whereas normal edge just corresponds to
variables appearing twice.

For a graph G = (V,E), an edge e = (u, v) ∈ E and
a vertex u ∈ V , define

G− e ,(V,E − e)

e− u ,( , v)(note that here v could be )

G− u ,(V − u,

{e : e ∈ E, e is not incident with u}

∪ {e− u : e ∈ E, e is incident with u})

Note that here in edge set E, duplicates are allowed.
We may have multiple dangling edges (v, ) and many
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free edges ( , ). Recall that here edges are unordered
pairs so we treat (v, ) and ( , v) as the same.

For example, given a degree-3 vertex u with dan-
gling edge e shown in Figure 1a , the result of e1 − u
is shown in Figure 1b and the result of G − e − u ,

(G− e)− u is shown in Figure 1c.

⑥�
��

⑥❅
❅❅
⑥u
e

e1 e2

(a) G

⑥ ⑥❅
❅❅
⑥u
e

e1 e2

(b) e1 − u

⑥ ⑥
e1 e2

(c) G− e− u

Figure 1: Dangling edges examples.

We use 0 to denote scalar value 0, and 0 to
denote the all-zero vector, and {ei}

d
i=1 denote the d-

dimensional vector with i-th coordinate being ei, so
{ei} = 0 means ∀i, ei = 0. We also use the convention

that when d = 0,
∏d

i pi , 1.
In general we use n to refer to the number of vertices

in a given graph, andm to refer to the number of edges.

3 The Computation Tree Recursion

In this section, we provide a recursion for computing
the marginal probability P (G, e) with that of smaller
instances.

3.1 e is free

Proposition 3.1.

P (G, e) =
1

2

Proof. If e is a free edge, then any edge cover with e
chosen is in one-to-one correspondence to an edge cover
with e not chosen. Hence exactly half of the edge covers
in EC(G) does not choose e, so P (G, e) = 1

2 .

3.2 e is dangling

Lemma 3.1. For graph G = (V,E) with a dangling edge

e = (u, ), denote d edges incident with u except e as

e1, e2, . . . , ed, let G1 , G − e − u, and ∀i ≥ 2, Gi ,

Gi−1 − ei−1 ,

(3.2) P (G, e) =
1−

∏d
i=1 P (Gi, ei)

2−
∏d

i=1 P (Gi, ei)

Proof. For α ∈ {0, 1}
d
, let ECα(G − e − u) be the

set of edge covers in G − e − u such that its re-
striction onto {ei}

d
i=1 is consistent with α, denote

Zα = |ECα(G− e− u)|, and Z =
∑

α∈{0,1}d Zα =

|EC(G− e− u)|.

Also note that as long as α 6= 0, counting edge
covers with restriction α is the same in either G, G− e,
or G − e − u, so it is enough to work with G − e − u.
Note that in G− e− u, for every i, ei is either dangling
or free, but not normal.

P (G, e) =
|EC(G− e)|

|EC(G)|

=

∑

α∈{0,1}d,α 6=0
Zα

Z0 + 2
∑

α∈{0,1}d,α6=0
Zα

=
Z − Z0

2Z − Z0

=
1− Z0

Z

2− Z0

Z

.

Now consider the term Z0

Z
, it says the probabil-

ity that a uniformly random edge cover drawn from
EC(G− e− u) picked none of {ei}

d
i=1, so

Z0

Z
=P ({ei} = 0)

=P(e1 = 0)
d
∏

i=2

P

(

ei = 0 | {ej}
i−1
j=1 = 0

)

=
d
∏

i=1

P (Gi, ei)

Hence by substitution we have

P (G, e) =
1−

∏d
i=1 P (Gi, ei)

2−
∏d

i=1 P (Gi, ei)

We remark that for every i, ei is dangling or free in
Gi.

3.3 e is a normal edge For e = (u, v) as a normal
edge, let {ei} be the set of edges incident with vertex
u except e, and {fi} be the set of edges incident with
vertex v except e, and d1 = |{ei}| , d2 = |{fi}|, now for

α ∈ {0, 1}
d1 ,β ∈ {0, 1}

d2 , we use ECα,β(G) to denote
the set of edge covers for G such that its restriction to
{ei}

d1

i=1 is consistent with α, and restriction to {fi}
d2

i=1

is consistent with β.
Denote ZG

α,β , |ECα,β(G)|, G′ , G − e,G′′ ,

G − e − u − v. As an illustration, given a normal edge
e = (u, v) in G as in Figure 2a, G′ and G′′ are Figure
2b and Figure 2c respectively.

By definition we have

(3.3) P (G, e) =
|EC(G′)|

|EC(G′)|+ |EC(G′′)|
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⑦�
�
�

⑦❅
❅

❅
⑦

⑦�
�
�

❅
❅

❅
⑦⑦

v

u

e

e1 e2

f1 f2

(a) G

⑦�
�
�

⑦❅
❅

❅
⑦

⑦�
�
�

❅
❅

❅
⑦⑦

v

u
e1 e2

f1 f2

(b) G′

⑦ ⑦

⑦⑦

e1 e2

f1 f2

(c) G′′

Figure 2: Normal edge examples.

Note that as long as α 6= 0,β 6= 0, working with G′

and working with G′′ is the same with restriction to α

and β, or formally,

|EC(G′)| =
∑

α 6=0,β 6=0

ZG′

α,β =
∑

α6=0,β 6=0

ZG′′

α,β

Since only G′′ is involved, denote
Zα,β , ZG′′

α,β

Z ,
∑

α∈{0,1}d1 ,β∈{0,1}d2 Zα,β

G1
i , G′′ −

∑i−1
k=1 ek

G2
i , G′′ −

∑d1

k=1 ek −
∑i−1

k=1 fk
G3

i , G′′ −
∑i−1

k=1 fk

Lemma 3.2. Let X =
∏d1

i=1 P (G1
i , ei),

Y =
∏d2

i=1 P (G2
i , fi), Z =

∏d2

i=1 P (G3
i , fi),

(3.4) P (G, e) = 1−
1

2 +X · Y −X − Z

Proof.

P (G, e) =

∑

α 6=0,β 6=0
Zα,β

Z +
∑

α 6=0,β 6=0
Zα,β

=
Z −

∑

α Zα,0 −
∑

β Z0,β + Z0,0

2Z −
∑

α Zα,0 −
∑

β Z0,β + Z0,0

= 1−
1

2 +
Z0,0

Z
−

∑
β
Z0,β

Z
−

∑
α

Zα,0

Z

Denote P (α = 0,β = 0) ,
Z0,0

Z
,

P (α = 0) ,
∑

β
Z0,β

Z
,P (β = 0) ,

∑
α

Zα,0

Z
.

Now consider the three terms respectively,

P (α = 0) =P ({ei} = 0) =

d1
∏

i=1

P (G1
i , ei)

P (β = 0) =P ({fi} = 0) =

d2
∏

i=1

P (G3
i , fi)

P (α = 0,β = 0)

=P (α = 0) · P (β = 0 | α = 0)

=P ({ei} = 0) · P ({fi} = 0 | {ei} = 0)

=

d1
∏

i=1

P

(

ei = 0 | {ej}
i−1
j=1 = 0

)

·

d2
∏

i=1

P

(

fi = 0 | {ej}
d1

j=1 = 0, {fj}
i−1
j=1 = 0

)

=

d1
∏

i=1

P (G1
i , ei) ·

d2
∏

i=1

P (G2
i , fi)

Hence equation (3.4) is verified.

Remark that for every i, ei is dangling or free in
G1

i , fi is dangling or free in G3
i , and in G2

i , neither ei
nor fi is normal.

4 Estimating Marginal Probability

Algorithm 1: Estimate P (G, e)

function P (G, e, L) :

input : Graph G; edge e; Recursion depth L;
output: Estimate of P (G, e) up to depth L .
begin

if L ≤ 0 then

return 1
2

else if e is free then

return 1
2 ;

else if e is dangling then

L′ ← L− ⌈log6 (d+ 1)⌉;

return
1−

∏
d
i=1

P (Gi,ei,L
′)

2−
∏

d
i=1

P (Gi,ei,L′)
;

else // e is normal

X ←
∏d1

i=1 P (G1
i , ei, L);

Y ←
∏d2

i=1 P (G2
i , fi, L);

Z ←
∏d2

i=1 P (G3
i , fi, L);

return 1−
1

2 +X · Y −X − Z
;

We may compute the marginal probability P (G, e)
exactly with the previous recursion, but that could take
recursion depth of O(n) which results in exponential
computation time. So here we use a truncated compu-
tation tree for an estimate of P (G, e).

As a remark, the recursion depth used here is
actually the so-called M -based depth introduced in [19]
with M = 6.

Note that the normal case is invoked only once,
so the algorithm keeps exploring in the third cases,

344 Copyright © 2014.
by the Society for Industrial and Applied Mathematics.

D
ow

nl
oa

de
d 

04
/2

5/
16

 to
 2

02
.1

20
.2

.3
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



until it hits the first 2 cases. We remark that an
alternative view of the recursion depth is, we replace
every node with degree greater than 6 with a 6-ary
branching subtree. Now with this alternative view, it
is easy to see that the nodes involved in the branching
tree up to depth L is at most 6L, and for the initial
normal edge case it involves at most n subtrees, and
for second-to-base-case nodes (i.e. nodes with 0 < L ≤
⌈log6 (d+ 1)⌉ ) they involve at most n extra base cases,
so the algorithm P (G, e, L) has running time O(n2 ·6L).

5 Correlation Decay Property

In the last section, we show an algorithm P (G, e, L)
for estimating the marginal probability P (G, e), so here
we establish the exponential correlation decay property,
in the stronger sense with the M -based depth, of the
estimation error in P (G, e, L).

Theorem 5.1. Given graph G, edge e and depth L,

|P (G, e, L)− P (G, e)| ≤ 3 · (
1

2
)L+1

Such phenomenon is usually referred to as exponen-
tial correlation decay. Before we prove the main theo-
rem, we will introduce a few useful propositions and
lemmas.

Proposition 5.1.

P (G, e) ≤
1

2

Proof. Although one may examine this case by case
algebraically, this proposition is quite obvious in a
combinatorial view, for any edge cover X ∈ EC(G)
with e /∈ X, X + e is also an edge cover in G, and
∀X,Y ∈ EC(G) s.t. X 6= Y, e /∈ X, e /∈ Y , we have
X + e 6= Y + e. So the edge covers with e chosen is
at least as many as the edge covers with e not chosen,
hence the proposition follows.

We remark that our algorithm also guarantees that

P (G, e, L) ≤ 1
2 , since for the dangling case,

1−
∏

i
xi

2−
∏

i
xi

=

1
2 −

∏
i
xi

2(2−
∏

i
xi)

; and for normal case X ·Y −X −Z ≤ 0.

For notational convenience, given d-dimensional
vector x ∈ [0, 1

2 ]
d, we denote

f(x) ,
1−

∏

i xi

2−
∏

i xi

Given a d1-dimensional vector x ∈ [0, 1
2 ]

d1 and two
d2-dimensional vectors y, z ∈ [0, 1

2 ]
d2 , let

g(x,y, z) , 1−
1

2 +
∏

i xi ·
∏

i yi −
∏

i xi −
∏

i zi

Lemma 5.1. For d-variate function f , given estimated

x̂ for true value x such that x̂ ∈ [0, 1
2 ]

d,x ∈ [0, 1
2 ]

d, let

ǫ , maxi |xi − x̂i|,

|f(x̂)− f(x)| ≤ min

{

1

2
, d

(

1

2

)d−1
}

· ǫ

Proof. First for d-dimensional vector x ∈ [0, 1
2 ]

d,

d
∑

i

∣

∣

∣

∣

∣

∂f(x)

∂xi

∣

∣

∣

∣

∣

≤min

{

1

2
, d

(

1

2

)d−1
}

(5.5)

For d = 0,
∑

i

∣

∣

∣

∣

∣

∂f(x)

∂xi

∣

∣

∣

∣

∣

= 0.

For d = 1,
∑

i

∣

∣

∣

∣

∣

∂f(x)

∂xi

∣

∣

∣

∣

∣

= 1
(2−x1)

2 ≤
4
9 .

For d = 2,
∑

i

∣

∣

∣

∣

∣

∂f(x)

∂xi

∣

∣

∣

∣

∣

= x1+x2

(2−x1x2)
2 ≤

16
49 .

For d = 3,
∑

i

∣

∣

∣

∣

∣

∂f(x)

∂xi

∣

∣

∣

∣

∣

= x1x2+x1x3+x2x3

(2−x1x2x3)
2 ≤ 16

75 .

Next by ∀k, xk ≤
1
2 ,

d
∑

i

∣

∣

∣

∣

∣

∂f(x)

∂xi

∣

∣

∣

∣

∣

=

d
∑

i

∏d
k 6=i xk

(2−
∏

i xi)
2 ≤ d

(

1

2

)d−1

So for d ≥ 4,
∑

i

∣

∣

∣

∣

∣

∂f(x)

∂xi

∣

∣

∣

∣

∣

≤ 1
2 , we have verified the

inequality relation (5.5).
Now let h(α) = f(αx + (1 − α)x̂) where α ∈ [0, 1],

by (5.5) and Mean Value Theorem, ∃α̃ ∈ [0, 1] s.t. for
x̃ = α̃x+ (1− α̃)x̂

|f(x̂)− f(x)| ≤
∑

i

∣

∣

∣

∣

∂f(x̃)

∂xi

∣

∣

∣

∣

· ǫ

≤min

{

1

2
, d

(

1

2

)d−1
}

· ǫ

Lemma 5.2. Given estimated x̂, ŷ, ẑ for true value

x,y, z respectively, such that x, x̂ ∈ [0, 1
2 ]

d1 ,y, z, ŷ, ẑ ∈

[0, 1
2 ]

d2 , let ǫ , maxi {|xi − x̂i| , |yi − ŷi| , |zi − ẑi|},

|g(x̂, ŷ, ẑ)− g(x,y, z)| ≤ 3ǫ

Proof. Denote

S1(x,y, z) ,
∑d1

k

∣

∣

∣

∂g(x,y,z)
∂xk

∣

∣

∣
,

S2(x,y, z) ,
∑d2

k

∣

∣

∣

∂g(x,y,z)
∂yk

∣

∣

∣
,

S3(x,y, z) ,
∑d2

k

∣

∣

∣

∂g(x,y,z)
∂zk

∣

∣

∣
,
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S4(x,y, z) , S1(x,y, z) + S2(x,y, z) + S3(x,y, z),

X ,
∏d1

i xi, Y ,
∏d2

i yi, Z ,
∏d2

i zi,

W , (2 +XY −X − Z)2.
For x ∈ [0, 1

2 ]
d1 ,y, z ∈ [0, 1

2 ]
d2 ,

S1(x,y, z) =
1

W

d1
∑

k

d1
∏

i6=k

xi · (1− Y ) ≤
d1

2d1−1
≤ 1

S2(x,y, z) =
1

W

d2
∑

k

d2
∏

i6=k

yi ·X ≤
d2

2d1+d2−1
≤ 1

S3(x,y, z) =
1

W

d2
∑

k

d2
∏

i6=k

zi ≤
d2

2d2−1
≤ 1

Now let h(α) = g(αx+(1−α)x̂, αy+(1−α)ŷ, αz+
(1− α)ẑ) where α ∈ [0, 1].

By Mean Value Theorem, ∃α̃ ∈ [0, 1] s.t. for
x̃ = α̃x+(1− α̃)x̂, ỹ = α̃y+(1− α̃)ŷ, z̃ = α̃z+(1− α̃)ẑ

|g(x̂, ŷ, ẑ)− g(x,y, z)| ≤S4(x̃, ỹ, z̃)ǫ ≤ 3ǫ

Proof of Theorem 5.1. Note that the recursion for
normal edge case is applied only once, so it is sufficient
to show that for free or dangling edge e:

|P (G, e, L)− P (G, e)| ≤ (
1

2
)L+1

And it automatically follows from Lemma 5.2 that
for normal edge e:

|P (G, e, L)− P (G, e)| ≤ 3 · (
1

2
)L+1

Now we prove by induction with induction hypoth-
esis that for free or dangling edge e:

|P (G, e, L)− P (G, e)| ≤ (
1

2
)L+1

For base case L = 0, |P (G, e, L)− P (G, e)| ≤ 1
2

holds when e is free or dangling.
Now suppose the induction hypothesis is true for

L < k, we shall prove that it is true for L = k.
Case 1, e is free edge |P (G, e, L)− P (G, e)| = 0.
Case 2, e = (u, ) is a dangling edge, denote with

deg(u) = d + 1, then by induction hypothesis we have
ǫ , maxi |P (Gi, ei, L− ⌈log6 (d+ 1)⌉)− P (Gi, ei)| ≤
(

1
2

)L−⌈log
6
(d+1)⌉+1

.
First by Lemma 5.1 we need to show that for d ≤ 4,

1

21+L−⌈log
6
(d+1)⌉+1

≤
1

2L+1

which is obvious because ⌈log6 (d+ 1)⌉ ≤ 1.
Next we show for d ≥ 5,

d ·

(

1

2

)d−1+L−⌈log
6
(d+1)⌉+1

≤

(

1

2

)L+1

Namely for d ≥ 5,

log2 d+ ⌈log6 (d+ 1)⌉ ≤ d− 1

For d = 5, 6, one can directly examine that as
log2 d < 3 and log6 6 = 1, log6 7 < 2.

For d ≥ 7, since the function f(x) = d−2− log2 d−
log6 (d+ 1) is monotonically increasing, and f(7) > 0,
we have

log2 d+ log6 (d+ 1) + 1 ≤ d− 1

Therefore, the hypothesis for L = k is verified.
To sum up, the case of free or dangling edge and

the case of normal edge together conclude the proof for
our main theorem.

6 Counting Edge Covers

Finally, we present the procedures for approximately
counting edge covers given good estimates of the
marginal probability P (G, e), hence an FPTAS for the
approximate counting of edge covers problem.

Proposition 6.1. Let Z(G) , |EC(G)| 6= 0 and

e1, e2, . . . , em be an enumeration of the edges E where

ei = (ui, vi). Define G1 , G,Gi , Gi−1−ei−1−ui−1−
vi−1, 1 < i ≤ m. Then

Z(G) =
1

∏m
i=1(1− P (Gi, ei))

Proof. With X ∼ EC(G) uniformly, P(X = E) has two
expressions,

P(X = E) =
1

Z(G)

P(X = E) =
∏

i

P

(

ei = 1 | {ej}
i−1
j=1 = 1

)

=
∏

i

(1− P (Gi, ei))

Therefore,

Z(G) =
1

∏m
i=1(1− P (Gi, ei))

We now show the main theorem of this section. Let
Z(G,L) , 1∏

m
i=1

(1−P (Gi,ei,L)) be the estimated number

of edge covers given estimated P (Gi, ei, L)

Theorem 6.1. For 0 < ǫ < 1, take L = log2 m +
log2(6/ǫ),

1− ǫ ≤
Z(G,L)

Z(G)
≤ 1 + ǫ
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Proof.

Z(G,L)

Z(G)
=

m
∏

i=1

1− P (Gi, ei)

1− P (Gi, ei, L)

By Theorem 5.1,

|P (Gi, ei, L)− P (Gi, ei)| ≤
ǫ

4m

Recall that 1− P (Gi, ei, L) ≥
1
2 ,

|P (Gi, ei, L)− P (Gi, ei)|

1− P (Gi, ei, L)
≤

ǫ

2m

Namely ∀i,

(

1−
ǫ

2m

)

≤
1− P (Gi, ei)

1− P (Gi, ei, L)
≤

(

1 +
ǫ

2m

)

So we have

(

1−
ǫ

2m

)m

≤

m
∏

i=1

1− P (Gi, ei)

1− P (Gi, ei, L)
≤

(

1 +
ǫ

2m

)m

1− ǫ ≤
Z(G,L)

Z(G)
≤ 1 + ǫ

To sum up, since Z(G,L) involves m calls to
P (G, e, L), so run Z(G,L) with L = log2 m+ log2(6/ǫ),
is an FPTAS for counting edge covers with overall
running time O(m · n2 · (m · 1

ǫ
)log2

6).

7 Open Problems

We have presented an FPTAS for approximately count-
ing the number of edge covers for any graph. Similarly
as the counting weighted independent sets with fugacity
parameter λ, a natural question to ask is whether there
is also an FPTAS for approximately counting weighted
edge covers, or formally, is there an FPTAS to approx-
imate the following partition function ZG(λ):

ZG(λ) ,
∑

X∈EC(G)

λ|X|

Also, will there be a phase transition as in the case
of counting independent sets? Note that our current
approach can be directly extended to the case where λ
is not too small (e.g. λ > 4

9 ), leaving the region where
λ being small open.

As we have noted previously, an alternative view
point of the edge cover problem is Rtw-Mon-CNF, hence
other natural problems are:

• For what integer value of k, counting read k times
monotone CNF admits an FPTAS?

• For counting read twice CNF (Rtw-CNF), is there
an FPTAS?

We remark that Rtw-CNF admits FPRAS [4], while
even counting read thrice 2CNF (without the monotone
restriction) is as hard as counting 2CNF (without the
read restriction) and hence does not admit FPRAS un-
less RP = NP . However to the best of our knowledge,
it is still open even whether counting Rtw-3CNF ad-
mits FPTAS. In general, it is of interest to see how far
the correlation decay technique could get in designing
FPTAS for counting problems.
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