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We give fully polynomial-time approximation schemes (FPTAS) for the partition function of ferromagnetic
2-spin systems in certain parameter regimes. The threshold we obtain is almost tight up to an integrality
gap. Our technique is based on the correlation decay framework. The main technical contribution is a new
potential function, with which we establish a new kind of spatial mixing.
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1 INTRODUCTION

Spin systems model nearest-neighbor interactions. In this article, we study two-state spin sys-
tems. An instance is a graph G = (V ,E), and a configuration σ : V → {0, 1} assigns one of the
two spins “0” and “1” to each vertex. The local interaction along an edge is specified by a matrix

A = [ A0,0 A0,1
A1,0 A1,1

], where Ai, j is the (non-negative) local weight when the two endpoints are assigned

i and j, respectively. We study symmetric edge interactions, that is, A0,1 = A1,0. Normalize A so

that A = [ β 1
1 γ ]. Moreover, we also consider the external field, specified by a mapping π : V → R+.

When a vertex is assigned “0,” we give it a weight π (v ). For a particular configuration σ , its weight
w (σ ) is a product over all edge interactions and vertex weights, that is

w (σ ) = βm0 (σ )γm1 (σ )
∏

v |σ (v )=0

π (v ),

where m0 (σ ) is the number of (0, 0) edges under the configuration σ and m1 (σ ) is the number
of (1, 1) edges. An important special case is the Ising model, where β = γ . The Gibbs measure
is a natural distribution in which each configuration σ is drawn with probability proportional
to its weight, that is, PrG ;β,γ ,π (σ ) ∼ w (σ ). The normalizing factor of the Gibbs measure is called
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the partition function, defined by Zβ,γ ,π (G ) =
∑

σ :V→{0,1}w (σ ). The partition function encodes
rich information regarding the macroscopic behavior of the spin system. We will be interested
in the computational complexity of approximating Zβ,γ ,π (G ). We also simply write Zβ,γ ,λ (G )
when the field is uniform, that is, π (v ) = λ for all v ∈ V . A system with uniform fields is specified
by the three parameters (β,γ , λ).

Spin systems not only are interesting in statistical physics but also find applications in computer
science, under the name of Markov random fields. Indeed, a two-state spin system is equivalent to a
binary Markov random field. For example, Boltzmann Machines [1] can be viewed as a special case
where γ = 1. Computing the partition function is a central task in statistical inference. According
to their physical and computational properties, spin systems can be classified into two families:
ferromagnetic systems, where the edge interaction is attractive (βγ > 1), and anti-ferromagnetic

systems, where it is repulsive (βγ < 1).
Recently, beautiful connections have been established regarding three different properties of

anti-ferromagnetic two-spin systems: tree uniqueness, spatial mixing, and computational com-
plexity transitions. The uniqueness of Gibbs measures in infinite regular trees1 of degrees up to
Δ implies correlation decay2 in all graphs of maximum degree Δ, and therefore the existence of
fully polynomial-time approximation scheme (FPTAS) for the partition function [14, 15, 20, 23].
However, if the tree uniqueness fails, then long range correlation appears and the partition func-
tion has no fully polynomial-time randomized approximation scheme (FPRAS) unless NP = RP
[5, 21, 22]. It suggests that tree uniqueness, spatial mixing, and the computational complexity of
approximating the partition function, line up perfectly in the anti-ferromagnetic regime.

For ferromagnetic systems, the picture is much less clear. In a seminal paper [11], Jerrum and
Sinclair gave an FPRAS for the ferromagnetic Ising model β = γ > 1 with any consistent external
field for general graphs without degree bounds. Thus, there is no computational complexity tran-
sition of approximating these models, whereas uniqueness and spatial mixing do exhibit phase
transition. This is in sharp contrast to anti-ferromagnetic Ising models β = γ < 1, where com-
putational and phase transitions align perfectly. It is not clear at all whether spatial mixing or
correlation decay plays any role in the computational complexity.

For more general ferromagnetic two-spin systems with external fields, the threshold of effi-
ciently approximating the partition function is still open. On the complexity side, Goldberg and
Jerrum showed that any ferromagnetic two-spin system is no harder than counting independent
sets in bipartite graphs (#BIS) [7], which is conjectured to have no FPRAS [4] (the approximation
complexity of #BIS is still open). Based on an earlier result [2], Liu, Lu and Zhang showed that

approximating the partition function is #BIS-hard if we allow external fields beyond (γ/β )
�Δc �+2

2 ,

where Δc =

√
βγ+1√
βγ−1

[16].3

On the algorithmic side, by reducing to the Ising model, an MCMC-based FPRAS is known for
the range of λ ≤ γ/β [16] (improving upon Reference [8]). However, if we apply the correlation
decay algorithmic framework to various pairs of parameters (β,γ ), it is not hard to get bounds
better thanγ/β . However, such success for individual problems does not seem to share meaningful
inner connections. In particular, it is not clear how far one can push this method, and to the best
of our knowledge, no threshold has even been conjectured.

1This property is called “tree uniqueness” or “uniqueness” for short. See Sections 2.2 and 6.1 for details.
2That is, the correlation of any two vertices decay exponentially in distance. This is also known as “spatial mixing.”
3Here and below, we assume β ≤ γ due to symmetry.
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1.1 Our Contribution

In this article, we identify a new threshold that almost tightly maps out the boundary of the corre-

lation decay regime, that is, λc := (γ/β )
Δc +1

2 = (γ/β )

√
βγ√

βγ −1 . We show that for any λ < λc a variant
of spatial mixing holds (Theorem 1.1) for arbitrary trees. An interesting feature of our work is that
we do not restrict the degree or the shape of the tree. This is almost tight, since it does not hold if

λ > (γ/β )
	Δc 
+1

2 . This spatial mixing is weaker than what an algorithm usually requires, but in the
regime of β ≤ 1 it implies (and therefore is equivalent to) strong spatial mixing. As an algorithmic
consequence, we have FPTAS for all β ≤ 1 < γ , βγ > 1, and λ < λc (Theorem 1.2). Recall that if

we allow λ beyond (γ/β )
�Δc �+2

2 , then the problem is #BIS-hard [16]. Hence, only an integral gap
remains for the β ≤ 1 < γ case.

Formally, let pv be the marginal probability of v being assigned “0.”

Theorem 1.1. Let (β,γ , λ) be a set of parameters of the system such that βγ > 1, β ≤ γ , and λ < λc .

Let Tv and T ′v ′ be two trees with roots v and v ′, respectively. If the two trees have the same structure

in the first � levels, then |pv − pv ′ | ≤ O (exp(−�)).

In other words, if we simply truncate a tree at depth �, then the marginal probability of its root
will change by only at most O (exp(−�)). Surprisingly, if we replace λc by its integral counterpart,
then this implication no longer holds and there is a counterexample (see Section 5). More precisely,
it is no longer true that the uniqueness in infinite regular trees implies correlation decay in graphs
or even trees, since our counterexample is an irregular tree. We note that this is in sharp contrast
to anti-ferromagnetic systems, where (integral) uniqueness implies correlation decay.

From the computational complexity point of view, we would like to get an FPTAS for the par-
tition function, which requires a condition called strong spatial mixing (SSM). It is stronger than
the spatial mixing established in Theorem 1.1 by imposing arbitrary partial configurations. We are
able to prove SSM with λ < λc in the range of β ≤ 1. Indeed, if β ≤ 1, then the two versions of
spatial mixing are equivalent. Let I be an interval of the form [λ1, λ2] or (λ1, λ2]. We consider the
following problem.

Name #2Spin(β,γ , I )
Instance A graph G = (V ,E) and a mapping π : V → R+, such that π (v ) ∈ I for any v ∈ V .
Output Zβ,γ ,π (G ).

Then, we have the following theorem.

Theorem 1.2. Let (β,γ , λ) be a set of parameters of the system such that βγ > 1, β ≤ 1 and λ < λc .

There is an FPTAS for #2Spin(β,γ , (0, λ]).

Therefore, we get an almost tight dichotomy for ferromagnetic two-spin systems when β ≤ 1,
since #2Spin(β,γ , (0, λ]) is #BIS-hard, if λ is larger than the integral counterpart of λc [16] (see
also Proposition 5.1).

The reason behind λc is a nice interplay among uniqueness, spatial mixing, and approximability.
We start with some purely mathematical observations on the symmetric tree recursion fd (x ) =

λ(
βx+1
x+γ

)d , an increasing function in x . Relax the range of d in fd (x ) to be real numbers. Then

Δc is the critical (possibly fractional) degree and λc is the corresponding critical external field
for the recursion to have a unique fixed point. This set of critical parameters enjoys some very
nice mathematical properties. For d = Δc and λ = λc , the function fd (x ) has a unique fixed point
x̂ =

√
γ/β and f ′

d
(x̂ ) = 1. Moreover, it also satisfies that f ′′

d
(x̂ ) = 0, which is a necessary condition
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for the contraction of the tree recursion. (This is easy to derive using the heuristic of finding
potential functions described in Reference [15].) All these nice mathematical properties prove to
be useful in our later analysis. For degrees other than Δc , their critical external fields are much
less convenient— the function fd (x ) has two fixed points: one is crossing and the other is tangent.
Moreover, f ′′

d
(x̂ ) = 0 does not necessarily hold.

The proof of Theorem 1.1 uses the potential method to analyze decay of correlation, which is
now streamlined (see, e.g., References [15, 19]). The main difficulty is to find a good potential
function. In other words, we want to solve a variational problem minimizing the maximum of the
decay rate function. The main novelty in our solution is that we restrict variables to the range of
(0, λ

1+λ
] and our potential function is well-defined only in this range. This is, in fact, necessary, as

otherwise the statement does not hold, and is valid for the setting of Theorem 1.1. Our choice leads
to a relatively clean and significantly simpler proof, comparing to similar proofs in other settings.
In particular, we do not need the “symmetrization” argument (see, e.g., References [15, 19]). We
also use a trick of truncating the potential to deal with unbounded degrees (see Equation (8)).

For the range of β > 1, SSM does not hold even if λ < λc . However, we conjecture that
Theorem 1.2 can be extended to the β > 1 range as well, mainly due to Theorem 1.1, which does
not require β ≤ 1. Moreover, we show that even if β > 1, the marginal probability in any instance
is within the range of (0, λ

1+λ
] given λ < λc (see Proposition 3.8). This seems to imply that the

main reason why our algorithm fails is due to pinnings (forcing a vertex to be “0” or “1”) in the
self-avoiding walk tree construction, whereas in a real instance these pinnings cannot aggregate
enough “bad” influence. However, to turn such intuition into an algorithm requires a careful treat-
ment of these pinnings to achieve an FPTAS without SSM. We leave this as an important open
problem.

At last, we note that neither λc nor its integral counterpart is the exact threshold in each own
respect, even if β ≤ 1. Strong spatial mixing continues to hold even if λ > λc in a small interval. We
give a concrete example to illustrate this fact in Section 4, Proposition 4.1. Moreover, as mentioned
earlier, an irregular tree exists where the correlation decay threshold is lower than the threshold
for all infinite regular trees. This is discussed in Section 5. It is another important open question
to figure out the exact threshold between λc and its integral counterpart(s).

2 PRELIMINARIES

An instance of a two-spin system is a graphG = (V ,E). A configuration σ : V → {0, 1} assigns one

of the two spins “0” and “1” to each vertex. We normalize the edge interaction to be [ β 1
1 γ ], and also

consider the external field, specified by a mapping π : V → R+. When a vertex is assigned “0,” we
give it a weight π (v ). All parameters are non-negative. For a particular configuration σ , its weight
w (σ ) is a product over all edge interactions and vertex weights, that is

w (σ ) = βm0 (σ )γm1 (σ )
∏

v |σ (v )=1

π (v ), (1)

wherem0 (σ ) is the number of (0, 0) edges given by the configuration σ andm1 (σ ) is the number of
(1, 1) edges. An important special case is the Ising model, where β = γ . Notice that in the statistic
physics literature, parameters are usually chosen to be the logarithms of our parameters above.
Different parameterizations do not affect the complexity of the same system.

We also write λv := π (v ). If π is a constant function such that λv = λ > 0 for all v ∈ V , then
we also denote it by λ. We say π has a lower bound (or an upper bound) λ > 0, if π satisfies the
guarantee that λv ≥ λ (or λv ≤ λ).
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The Gibbs measure is a natural distribution in which each configuration σ is drawn with prob-
ability proportional to its weight, that is,

Pr
G ;β,γ ,π

(σ ) ∝ w (σ ). (2)

The normalizing factor of the Gibbs measure is called the partition function, defined by
Zβ,γ ,π (G ) =

∑
σ :V→{0,1}w (σ ). Recall that we are interested in the computational problem

#2Spin(β,γ , I ), where I is an interval of the form [λ1, λ2] or (λ1, λ2], for which Zβ,γ ,π (G ) is the
output. When input graphs are restricted to have a degree bound Δ, we write #Δ-2Spin(β,γ , I ) to
denote the problem. When the field is uniform, that is, λ is the only element in I , we simply write
#2Spin(β,γ , λ). Due to Reference [3] and a standard diagonal transformation, for any constant
λ > 0, #2Spin(β,γ , λ) is #P-hard unless β = γ = 0 or βγ = 1.

2.1 The Self-Avoiding Walk Tree

We briefly describe Weitz’s algorithm [23]. Our algorithms presented later will follow roughly the
same paradigm.

The Gibbs measure defines a marginal distribution of spins for each vertex. Let pv denote the
probability of a vertex v being assigned “0”. Since the system is self-reducible, #2Spin(β,γ , λ) is
equivalent to computing pv for any vertex v [12] (for details, see, for example, Lemma 2.6).

Let σΛ ∈ {0, 1}Λ be a configuration of Λ ⊂ V . We call vertices in Λ fixed and other vertices free.
We use pσΛ

v to denote the marginal probability of v being assigned “0” conditional on the configu-
ration σΛ of Λ.

Suppose the instance is a tree T with root v . Let RσΛ

T
:= pσΛ

v /(1 − pσΛ
v ) be the ratio between the

two probabilities that the rootv is 0 and 1, while imposing some condition σΛ (with the convention
that RσΛ

T
= ∞ when pσΛ

v = 1). Suppose that v has d children vi , . . .vd . Let Ti be the subtree with
root vi . Due to the independence of subtrees, it is straightforward to get the following recursion
for calculating RσΛ

T
:

RσΛ

T
= Fd

(
RσΛ

T1
, . . . ,RσΛ

Td

)
, (3)

where the function Fd (x1, . . . ,xd ) is defined as

Fd (x1, . . . ,xd ) := λv

d∏
i=1

βxi + 1

xi + γ
.

We allow xi ’s to take the value∞ as in that case the function Fd is clearly well defined. In general,
we use capital letters like F ,G,C, . . . to denote multivariate functions and small letters f ,д, c, . . .
to denote their symmetric versions, where all variables take the same value. Here, we define

fd (x ) := λ
(

βx+1
x+γ

)d
to be the symmetric version of Fd (x) obtained by setting x1 = · · · = xd = x .

Let G (V ,E) be a graph. Similarly define RσΛ

G,v := pσΛ
v /(1 − pσΛ

v ). In contrast to the case of trees,

there is no easy recursion to calculate RσΛ

G,v for a general graphG. This is because of dependencies
introduced by cycles. Weitz [23] reduced computing the marginal distribution of v in a general
graph G to that in a tree, called the self-avoiding walk (SAW) tree, denoted by TSAW (G,v ). To
be specific, given a graph G = (V ,E) and a vertex v ∈ V , TSAW (G,v ) is a tree with root v that
enumerates all self-avoiding walks originating from v inG, with additional vertices closing cycles
as leaves of the tree. Each vertex in the new vertex setVSAW ofTSAW (G,v ) corresponds to a vertex
inG, but a vertex inG may be mapped to more than one vertices inVSAW. A boundary condition is
imposed on leaves inVSAW that close cycles. The imposed colors of such leaves depend on whether
the cycle is formed from a small vertex to a large vertex or conversely, where the ordering is
arbitrarily chosen in G. Vertex sets S ⊂ Λ ⊂ V are mapped to, respectively, SSAW ⊂ ΛSAW ⊂ VSAW,
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and any configuration σΛ ∈ {0, 1}Λ is mapped to σΛSAW ∈ {0, 1}ΛSAW . With slight abuse of notations,
we may write S = SSAW and σΛ = σΛSAW when no ambiguity is caused.

Proposition 2.1 (Theorem 3.1 of Weitz [23]). Let G = (V ,E) be a graph, v ∈ V , σΛ ∈ {0, 1}Λ
be a configuration on Λ ⊂ V , and S ⊂ V . Let T = TSAW (G,v ) be constructed as above. It holds that

RσΛ

G,v = RσΛ

T
.

Moreover, the maximum degree of T is at most the maximum degree of G, distG (v, S ) =
distT (v, SSAW), and any neighborhood of v in T can be constructed in time proportional to the size of

the neighborhood.

The SAW tree construction does not solve a #P-hard problem, since TSAW (G,v ) is potentially
exponentially large in size of G. For a polynomial time approximation algorithm, we may run the
tree recursion within some polynomial size, or equivalently a logarithmic depth. At the boundary
where we stop, we plug in some arbitrary values. The question is then how large is the error due to
our random guess. To guarantee the performance of the algorithm, we need the following notion
of strong spatial mixing.

Definition 2.2. A spin system on a family G of graphs is said to exhibit strong spatial mixing

(SSM) if for any graph G = (V ,E) ∈ G, any v ∈ V ,Λ ⊂ V and any σΛ,τΛ ∈ {0, 1}Λ,

��p
σΛ
v − pτΛ

v
�� ≤ exp(−Ω(dist(v, S ))), (4)

where S ⊂ Λ is the subset on which σΛ and τΛ differ, and dist(v, S ) is the shortest distance from v
to any vertex in S .

Weak spatial mixing is defined similarly by replacing dist(v, S ) with dist(v,Λ) in Equation (4),
and it corresponds to the uniqueness condition introduced below in Section 2.2. Spatial mixing
properties are also called correlation decay in statistical physics.

If SSM holds, then the error caused by early termination in TSAW (G,v ) and arbitrary boundary
values is only exponentially small in the depth. Hence, the algorithm is an FPTAS. In a lot of cases,
the existence of an FPTAS boils down to establish SSM.

2.2 The Uniqueness Condition in Regular Trees

Let Td denote the infinite d-regular tree, also known as the Bethe lattice or the Cayley tree. If we
pick an arbitrary vertex as the root of Td , then the root has d children and every other vertex has
d − 1 children. Notice that the difference between Td and an infinite (d − 1)-ary tree is only the
degree of the root. We assume in this subsection that the field is uniform λ > 0.

The Gibbs measure in Td is a probability measure where conditioned on any arbitrary configu-
ration on the boundary of a finite set S , the resulting distribution on S is the same as the one given
by Equation (2) on S with the same boundary condition. When the Gibbs measure is unique, we
say that the uniqueness condition holds in Td . The tree recursion Equation (3) turns out to be im-
portant in analyzing the uniqueness condition. Due to the symmetric structure of Td , it becomes

Rv = fd−1 (Rvi
) (for any vertexv other than the root), where fd (x ) = λ(

βx+1
x+γ

)d is the symmetrized

version of Fd (x).
For anti-ferromagnetic systems, that is, βγ < 1, there is a unique fixed point to fd (x ) = x , de-

noted by x̂ . It has been shown that the Gibbs measure in Td is unique if and only if | f ′
d−1 (x̂ ) | ≤ 1

[6, 13].
In contrast, if βγ > 1, then there may be 1 or 3 positive fixed points such that x = fd (x ). It is

known [6, 13] that the Gibbs measure of two-state spin systems in Td is unique if and only if there
is only one fixed point for x = fd−1 (x ), or equivalently, for all fixed points x̂d of fd (x ), f ′

d
(x̂d ) < 1.
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Fig. 1. Commutative diagram between Fd and Gd .

Let Δc :=
√

βγ+1√
βγ−1

. Then, we have the following result.

Proposition 2.3. If Δ − 1 < Δc , then the uniqueness condition in TΔ holds regardless of the field.

Note that the condition Δ − 1 < Δc matches the exact threshold of fast mixing for Glauber dy-
namics in the Ising model [18]. In Section 3.1, we will show that, SSM holds and there exists an
FPTAS for the partition function, in graphs with degree bound Δ < Δc + 1 and any field λ > 0.
This is Theorem 3.1.

To study general graphs, one needs to consider infinite regular trees of all degrees. If β > 1 (still
assuming βγ > 1 and β ≤ γ ), then there is no λ such that the uniqueness condition holds in Td for

all degrees d ≥ 2. In contrast, let λint
c := (γ/β )

	Δc 
+1
2 and for β ≤ 1, we have the following.

Proposition 2.4. Let (β,γ ) be two parameters such that βγ > 1.

• If β ≤ 1 < γ , then uniqueness holds for Td with all degrees d ≥ 2 if and only if λ < λint
c .

• If β,γ > 1, then there is no λ > 0 such that uniqueness holds for all Td with d ≥ 2.

However, there exist (β,γ , λ) and an (irregular) treeT such that βγ > 1, β ≤ 1 < γ , and λ < λint
c

and SSM does not hold inT . This is discussed in Section 5. Recall that λc := (γ/β )
Δc +1

2 . If we replace
λint

c with λc ≤ λint
c in the condition of Proposition 2.4, that is, βγ > 1, β ≤ 1 < γ , and λ < λc , then

SSM holds in all graphs and an FPTAS exists. This is shown in Section 3.2, Theorem 3.6.
Details and proofs about Propositions 2.3 and 2.4 are given in Section 6.1.

2.3 The Potential Method

We would like to prove the strong spatial mixing in arbitrary trees, sometimes with bounded degree
Δ, under certain conditions. This is sufficient for approximation algorithms due to the self-avoiding
walk tree construction. Our main technique in the analysis is the potential method. The analysis
in this section is a standard routine, with some specialization to ferromagnetic 2-spin models (cf.
References [15, 19]). To avoid interrupting the flow, we move all details and proofs to Section 6.2.

Roughly speaking, instead of studying Equation (3) directly, we use a potential function Φ(x ) to
map the original recursion to a new domain (see the commutative diagram Figure 1). Morally, we
can choose whatever function as the potential function. However, we would like to pick “good”
ones to help the analysis of the contraction. Define φ (x ) := Φ′(x ) and

Cφ,d (x) := φ (Fd (x)) ·
d∑

i=1

�����

∂Fd

∂xi

�����

1

φ (xi )
.

Definition 2.5. Let Φ : R+ → R+ be a differentiable and monotonically increasing function. Let
φ (x ) and Cφ,d (x) be defined as above. Then Φ(x ) is a good potential function for degree d and field

λ if it satisfies the following conditions:
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(1) there exists a constant C1,C2 > 0 such that C1 ≤ φ (x ) ≤ C2 for all x ∈ [λγ−d , λβd ];
(2) there exists a constant α < 1 such that Cφ,d (x) ≤ α for all xi ∈ [λγ−d , λβd ].

We say Φ(x ) is a good potential function for d and field π , if Φ(x ) is a good potential function
for d and any λ in the codomain of π ,

In Definition 2.5, Condition 1 is rather easy to satisfy. The crux is in fact Condition 2. We call α in
Condition 2 the amortized contraction ratio of Φ(x ). It has the following algorithmic implication.
The proof is based on establishing strong spatial mixing.

Lemma 2.6. Let (β,γ ) be two parameters such that βγ > 1. LetG = (V ,E) be a graph with a max-

imum degree Δ and n many vertices and π be a field on G. Let λ = maxv ∈V {π (v )}. If there exists a

good potential function for π and all d ∈ [1,Δ − 1] with contraction ratio α < 1, then Zβ,γ ,π (G ) can

be approximated deterministically within a relative error ε in time O (n( nλ
ε

)
log(Δ−1)
− log α ).

When the degree is unbounded, the SAW tree may grow super polynomially even if the depth
is of order logn. We use a refined metric replacing the naive graph distance used in Definition 2.2.
Strong spatial mixing under this metric is also called computationally efficient correlation decay [14,
15].

Definition 2.7. Let T be a rooted tree and M > 1 be a constant. For any vertex v in T , define
the M-based depth of v , denoted �M (v ), such that �M (v ) = 0 if v is the root, and �M (v ) = �M (u) +
	logM (d + 1)
 if v is a child of u and u has degree d .

Let B (�) be the set of all vertices whose M-based depths of v is at most �. It is easy to verify
inductively such that |B (�) | ≤ M� in a tree. We then define a slightly stronger notion of potential
functions.

Definition 2.8. Let Φ : R+ → R+ be a differentiable and monotonically increasing function. Let
φ (x ) and Cφ,d (x) defined in the same way as in Definition 2.5. Then, Φ(x ) is a universal potential

function for the field λ if it satisfies the following conditions:

(1) there are two constants C1,C2 > 0 such that C1 ≤ φ (x ) ≤ C2 for any x ∈ (0, λ];
(2) there exists a constant α < 1 such that for all d , Cφ,d (x) ≤ α 	logM (d+1)
 for all xi ∈ (0, λ].

We say Φ(x ) is a universal potential function for a field π , if Φ(x ) is a universal potential func-
tion for any λ in the codomain of π . We also call α the contraction ratio and call M the base.
The following two lemmas show that our main theorems follow from the existence of a universal
potential function.

The way we define universal potential functions restricts them to only apply to the range of
(0, λ]. This will be true in our applications (see for example Claim 3.4).

Lemma 2.9. Let (β,γ , λ) be three parameters such that βγ > 1, β ≤ γ , and λ < λc . Let T and T ′

be two trees that agree on the first � levels with root v and v ′, respectively. If there exists a universal

potential function Φ(x ), then ��pv − pv ′
�� ≤ O (exp(−�)).

Lemma 2.10. Let (β,γ ) be two parameters such that βγ > 1 and β ≤ 1 < γ . Let G = (V ,E) be a

graph with n many vertices and π be a field on G. Let λ = maxv ∈V {π (v )}. If there exists a univer-

sal potential function Φ(x ) for π with contraction ratio α < 1 and base M , then Zβ,γ ,π (G ) can be

approximated deterministically within a relative error ε in time O (n3 ( nλ
ε

)
log M
− log α ).

3 CORRELATION DECAY BELOW Δc OR λc

In this section, we show our main results. We will first show a folklore result for bounded degree
graphs with a very simple proof. Then, we continue to show the main theorem regarding general
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graphs. We carefully choose two appropriate potential functions and then apply Lemma 2.6 or
Lemma 2.10.

3.1 Bounded Degree Graphs

We first apply our framework to get FPTAS for graphs with degree bound Δ < Δc + 1 =
2
√

βγ√
βγ−1

.

Correlation decay for graphs with such degree bounds is folklore and can be found in [17] for
the Ising model. Algorithmic implications are also shown, e.g., in Reference [24]. As we shall see,
the proof is very simple in our framework. Note that λ, Δ, and α are considered constants for the
FPTAS.

Theorem 3.1. Let (β,γ ) be two parameters such that βγ > 1. Let G = (V ,E) be a graph

with a maximum degree Δ < Δc + 1 and n many vertices, and let π be a field on G. Let λ =
maxv ∈V {π (v )}. Then, Zβ,γ ,π (G ) can be approximated deterministically within a relative error ε in

time O (n( nλ
ε

)
log(Δ−1)
− log α ), where α = Δ−1

Δc
.

Proof. We choose our potential function to be Φ1 (x ) = logx such that φ1 (x ) := Φ′1 (x ) = 1
x

. We
verify the conditions of Definition 2.5. Condition 1 is trivial. For Condition 2, we have that for any
integer 1 ≤ d ≤ Δ − 1,

Cφ1,d (x) = φ1 (Fd (x))
d∑

i=1

∂Fd

∂xi
· 1

φ1 (x )

=
1

Fd (x)

d∑
i=1

Fd (x) · βγ − 1

(xi + β ) (γxi + 1)
· xi

=

d∑
i=1

(βγ − 1)xi

(γxi + 1) (xi + β )
≤

d∑
i=1

1

Δc
=

d

Δc
≤ Δ − 1

Δc
= α ,

where we used the fact that for any x > 0,

(βγ − 1)x

(γx + 1) (x + β )
≤ 1

Δc
.

Hence, Φ1 (x ) is a good potential function for all degrees d ∈ [1,Δ − 1] with contraction ratio α .
The theorem follows by Lemma 2.6. �

Note that Theorem 3.1 matches the uniqueness condition in Proposition 2.3 and, restricted to
the Ising model, the fast mixing bound of Gibbs samplers in Reference [18].

3.2 General Graphs

Now we turn our attention to general graphs without degree bounds.

Recall that λc = (
γ

β
)

Δc +1
2 = (

γ

β
)

√
βγ√

βγ −1 . The following two technical lemmas show some important

properties regarding the threshold λc , which are keys to get our main theorems. In particular,
Lemma 3.3 is key to bound the decay ratio. Proofs are given in Section 6.3.

Lemma 3.2. Let β,γ be two parameters such that βγ > 1 and β ≤ γ . For any 0 < x ≤ λc ,
βx+1
x+γ
≤ 1.

Lemma 3.3. Let β,γ be two parameters such that βγ > 1 and β ≤ γ . For any 0 < x ≤ λc , we have

(βγ − 1)x log
λc

x
≤ (βx + 1) (x + γ ) log

x + γ

βx + 1
. (5)

ACM Transactions on Computation Theory, Vol. 10, No. 4, Article 17. Publication date: September 2018.



17:10 H. Guo and P. Lu

In our applications, the quantity x in both lemmas will be the ratio of marginal probabilities in
trees, denoted by Rv for a vertex v . To make use of these properties, one key requirement is that
0 < x ≤ λc . This is not necessarily true in trees with pinning (and therefore not true in general
SAW trees). Nevertheless, it does hold in trees without pinning.

Claim 3.4. For (β,γ , λ) where βγ > 1, β ≤ γ , and λ < λc , Rv ∈ (0, λ] holds in trees without pin-

ning.

We prove Claim 3.4 by induction. For any tree Tv , if v is the only vertex, then Rv = λ and the
base case holds. Given Lemma 3.2 and λ < λc , the inductive step to show Claim 3.4 follows from
the standard tree recursion Equation (3).

In addition, it also holds when β ≤ 1, in trees even with pinning (but not counting the pinned
vertices). This includes the SAW tree construction as special cases. To see that, for any vertex v ,
if one of v’s child, say u, is pinned to 0 (or 1), then we can just remove u and replace the field λv

on v with λ′v = λvβ (or λ′v = λv/γ ), without affecting the marginal probability of v and any other
vertices.4 By our assumptions λv < λc and β ≤ 1 < γ , we have that λ′v < λc as well. Hence, after
removing all pinned vertices, we still have that λv ≤ λc for all v ∈ V . This reduces to Claim 3.4.

Indeed, both of Theorem 1.1 and 1.2 can be generalized to the setting where vertices may have
different external fields as long as they are all below λc , as follows.

Theorem 3.5. Let (β,γ ) be two parameters such that βγ > 1, β ≤ γ , and λ < λc . Let Tv and T ′v ′
be two trees with roots v and v ′, respectively. Let λ = maxu ∈Tv∪T ′

v′
{π (u)}. If λ < λc and in the first �

levels, Tv andT ′v ′ have the same structure and external fields for corresponding pairs of vertices, then

|pv − pv ′ | ≤ O (exp(−�)).

Theorem 3.6. Let (β,γ ) be two parameters such that βγ > 1 and β ≤ 1 < γ . Let G = (V ,E) be a

graph withn many vertices, and let π be a field onG. Let λ = maxv ∈V {π (v )}. If λ < λc , thenZβ,γ ,π (G )

can be approximated deterministically within a relative error ε in time O (n( nλ
ε

)
log M
− log α ), where M > 1

and α < 1 are two constants depending on (β,γ , λ).

To show Theorems 3.5 and 3.6, we will apply Lemmas 2.9 and 2.10. Essentially, we only need to
show the existence of a universal potential function.

Let дλ (x ) :=
(βγ−1)x log λ

x

(βx+1)(x+γ ) log x+γ
β x+1

. By Lemma 3.3, дλc
(x ) ≤ 1. For λ < λc , note that limx→0 дλ (x ) =

0. Hence, there exists 0 < ε < λ and 0 < δ < 1 such that if 0 < x < ε , дλ (x ) < δ . Moreover, if ε ≤
x ≤ λ, then дλ (x )

дλc (x ) =
log λ−log x

log λc−log x
≤ log λ−log ε

log λc−log ε
. Let

αλ := max

{
δ ,

log λ − log ε

log λc − log ε

}
< 1.

Then, we have just shown the following lemma.

Lemma 3.7. Let β,γ be two parameters such that βγ > 1 and β ≤ γ . If λ < λc , then дλ (x ) ≤ αλ for

any 0 < x ≤ λ, where αλ < 1 is defined above.

Let t := αλγ

βγ−1 log λ+γ

βλ+1 so that for any 0 < x ≤ λ,

t <
αλ (βx + 1) (x + γ )

βγ − 1
log

x + γ

βx + 1
, (6)

4We may need to repeat this step for d times, giving rise to the interval in Definition 2.5.
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since (βx + 1) (x + γ ) > γ and log x+γ

βx+1 ≥ log λ+γ

βλ+1 . We define φ2 (x ) := min{ 1
t
, 1

x log λ
x

}. To be more

specific, note that x log λ
x
≤ λ

e
for any 0 < x ≤ λ. If t ≥ λ

e
, then 1

x log λ
x

≥ 1
t

for any 0 < x ≤ λ, im-

plying that

φ2 (x ) =
1

t
. (7)

Otherwise, t < λ
e

, and there are two roots to x log λ
x
= t in (0, λ]. Denote them by x0 and x1.

Then, we have that

φ2 (x ) =

⎧⎪⎪⎪⎨
⎪⎪⎪
⎩

1
t

0 ≤ x < x0;
1

x log λ
x

x0 ≤ x < x1;
1
t

x1 ≤ x < λ.

(8)

We define Φ2 (x ) :=
∫ x

0
φ2 (y)dy so that Φ′2 (x ) = φ2 (x ). Our choice of φ2 (x ) ensures that for any

0 < x ≤ λ,

φ2 (x )x log
λ

x
≤ 1. (9)

Moreover, we claim that

βγ − 1

(βx + 1) (x + γ )
· 1

φ2 (x )
≤ αλ log

x + γ

βx + 1
. (10)

This is because if φ2 (x ) = 1
x log λ

x

, then by Lemmas 3.2 and 3.7,

βγ − 1

(βx + 1) (x + γ )
· x log

λ

x
≤ αλ log

x + γ

βx + 1
,

which implies Equation (10). Otherwise, φ2 (x ) = 1/t , and Equation (10) follows from Equation (6).
Now, we are ready to prove Theorems 3.5 and 3.6.

Proof of Theorems 3.5 and 3.6. We claim that Φ2 (x ) is a universal potential function for any
field π with an upper bound λ, with contraction ratio αλ given above and base M that will be
determined shortly. Theorems 3.5 and 3.6 follow from Φ2 (x ) combined with Lemmas 2.9 and 2.10,
respectively. We verify the two conditions in Definition 2.8.

For Condition 1, it is easy to see that in case Equation (7), φ2 (x ) = 1
t

for any x ∈ (0, λ], and in
case Equation (8), e

λ
≤ φ2 (x ) ≤ 1

t
for any x ∈ (0, λ].

For Condition 2, we have that

Cφ2,d (x) = φ2 (Fd (x))
d∑

i=1

∂Fd

∂xi
· 1

φ2 (xi )

= φ2 (Fd (x))Fd (x)
d∑

i=1

βγ − 1

(βxi + 1) (xi + γ )
· 1

φ2 (xi )

≤ φ2 (Fd (x))Fd (x)
d∑

i=1

αλ log
xi + γ

βxi + 1
(by Equation (10))

= αλφ2 (Fd (x))Fd (x) log
λ

Fd (x)
(11)

≤ αλ . (by Equation (9))
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17:12 H. Guo and P. Lu

Moreover, Fd (x) < λ(
βλ+1
λ+γ

)d for any xi ∈ (0, λ]. We have an alternative bound that

Cφ2,d (x) ≤ αλ

t
Fd (x) log

λ

Fd (x)
(by Equation (11) and φ2 (x ) ≤ 1/t )

≤ αλλ

t

(
βλ + 1

λ + γ

)d

d log
λ + γ

βλ + 1
.

Since βλ+1
λ+γ
< 1 by Lemma 3.2, the right-hand side decreases exponentially in d . Therefore, there

exists a sufficiently large integer M such that for any 1 ≤ d < M ,Cφ2,d (x) ≤ αλ ≤ α
	logM (d+1)

λ

, and

for any d ≥ M , Cφ2,d (x) ≤ α
	logM (d+1)

λ

. This verifies Condition 2. �

3.3 Heuristics Behind Φ2 (x )

The most intricate part of our proofs of Theorems 3.5 and 3.6 is the choice of the potential function
Φ2 (x ) given by Equation (8). Here, we give a brief heuristic of deriving it. It is more of an “educated
guess” than a rigorous argument.

We want to pick Φ2 (x ) such that Condition 2 holds. In particular, we want

φ2 (Fd (x))
d∑

i=1

∂Fd

∂xi
· 1

φ2 (xi )
< 1.

It is fair to assume that the left-hand side of the equation above takes its maximum when all xi ’s
are equal. Hence, we hope the following to hold:

φ2 ( fd (x )) f ′
d

(x )

φ2 (x )
< 1, (12)

where fd (x ) = λ(
βx+1
x+γ

)d is the symmetrized version of Fd (x). We will use z := fd (x ) to simplify

notation. Since we want Equation (12) to hold for all degrees d , we hope to eliminate d from the
left-hand side of Equation (12). Notice that φ2 (x ) should be independent from d . Therefore, we
take the derivative of φ2 ( fd (x )) f ′

d
(x ) against d and get

∂φ2 ( fd (x )) f ′
d

(x )

∂d
=

βγ − 1

(βx + 1) (x + γ )

(
φ2 (z)z + φ2 (z)z log

z

λ
+ φ ′2 (z)z2 log

z

λ

)

=
(βγ − 1)zφ2 (z)

(βx + 1) (x + γ )

(
1 + log

z

λ
+ (logφ2 (z))′z log

z

λ

)
.

We may achieve our goal of eliminating d by imposing the sum in the last parenthesis to be 0,
namely,

(logφ2 (z))′ = −1

z
− 1

z log z
λ

= −(log z)′ −
(
log log

λ

z

) ′
. (13)

From Equation (13), it is easy to see that φ2 (z) = 1
z log λ

z

satisfies our need. To get the full definition

of Equation (8), we apply a thresholding trick to bound φ2 (z) away from 0.
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3.4 Discussion of the β > 1 Case

We cannot combine conditions of Theorems 3.5 and 3.6 together to have an FPTAS. In particular,
when β > 1 strong spatial mixing fails for any λ even if λ < λc . To see this, given a Δ-ary tree
T , we can append t many children to every vertex in T to get a new tree T ′ and impose a partial
configuration σ where all these new children are pinned to 0. Effectively, the treeT ′ is equivalent
toT where every vertex has a new external field of λβ t , which is larger than λint

c if t is sufficiently
large regardless of λ. Then by Proposition 2.4, long-range correlation exists in T ′ with the partial
configuration σ , and strong spatial mixing fails.

However, it is easy to see from the proof that, Theorem 3.5 can be generalized to allow a partial
configuration σ on some subset Λ where the marginal probability of every vertex v ∈ Λ satisfies
pσ

v ≤
λc

λc+1 . This is not the case for the SAW tree that our algorithm relies on when β > 1. How-

ever, the following observation shows that if λv ≤ λc ≤ γ−1
β−1 , then the marginal probability of any

instanceG satisfies this requirement. Thus, it seems the only piece missing to obtain an algorithm
is to design a better recursion tree instead of the SAW tree.

Proposition 3.8. Let (β,γ ) be two parameters such that 1 ≤ β ≤ γ and βγ > 1. Let λ ≤ γ−1
β−1 be

another parameter. For any graph G = (V ,E), if π (v ) ≤ λ for all v ∈ V , then pv ≤ λ
λ+1 .

To prove this proposition, we need to use the random cluster formulation of two-spin models. Let
G be a graph and e = (v1,v2) be one of its edges. LetG+ be the graph where the edge e is contracted,

andG− be the graph where e is removed. Moreover, inG+, we assign π+ (ṽ ) = λv1λv2

β−1
γ−1 , where ṽ

is the vertex obtained from contacting e . Then, we have that

Z (G ) = Z (G−) + (γ − 1)Z (G+), (14)

where we writeZ (G ) instead ofZβ,γ ,π (G ) to simplify the notation. To show the equation above, we
only need a simple adapation of the random cluster formulation of the Ising model to the two-spin
setting.

Proof of Proposition 3.8. SupposeG = (V ,E) where |V | = n and |E | =m. We show the claim
by inducting on (m,n). Clearly the statement holds when m = 0 or n = 1. Hence, we may assume
the claim holds for (m′,n) wherem′ < m as well as (m′,n′) where n′ < n, and show that the claim
holds for (m,n).

Pick an arbitrary edge e = (v1,v2) inG. LetG+ andG− be as in the random cluster formulation. It

is easy to see that π (ṽ ) = λv1λv2

β−1
γ−1 ≤ λ. Hence, bothG+ andG− satisfy the induction hypothesis.

It implies thatpG−;v ≤ λ
λ+1 for anyv , wherepG−;v is the mariginal probability ofv inG−. Moreover,

pG+;v ≤ λ
λ+1 for any v ∈ V +, where V + is the vertex set of G+. Let δ be a mapping V → V + such

that δ (v ) = v if v � v1,v2 and δ (v1) = δ (v2) = ṽ . Then, using Equation (14), we have that for any
vertex v ∈ V ,

pG ;v =
Zσ (v )=0 (G )

Z (G )
=

Zσ (v )=0 (G−) + (γ − 1)Zσ (δ (v ))=0 (G+)

Z (G−) + (γ − 1)Z (G+)

= pG−;v ·
Z (G−)

Z (G−) + (γ − 1)Z (G+)
+ pG+;δ (v ) ·

(γ − 1)Z (G+)

Z (G−) + (γ − 1)Z (G+)

≤ λ

λ + 1
· Z (G−)

Z (G−) + (γ − 1)Z (G+)
+

λ

λ + 1
· (γ − 1)Z (G+)

Z (G−) + (γ − 1)Z (G+)
=

λ

λ + 1
,

where in the last line we use the induction hypotheses. �

Proposition 3.8 can be also viewed as a generalization of Griffith’s first inequality [9] from the
Ising model to general ferromagnetic two-spin systems.
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4 CORRELATION DECAY BEYOND λc

Let β,γ be two parameters such that β ≤ 1 < γ and βγ > 1. In this section, we give an example to
show that if Δc is not an integer, then correlation decay still holds for a small interval beyond λc .
To simplify the presentation, we assume that π is a uniform field such that π (v ) = λ. Note that the
potential function φ2 (x ) does not extend beyond λc .

Let β = 0.6 and γ = 2. Then, Δc =

√
βγ+1√
βγ−1

≈ 21.95 and λc = (γ/β )
Δc +1

2 < 1002761. Let λ =

1002762 > λc . We will show that #2Spin(β,γ , λ) still has an FPTAS.
Define a constant t as

t :=

√
βγ + 1√
βγ − 1

·
log

√
γ/β√

γ/β + 1
− log

(
1 +

√
β/γ

)
≈ 4.24032. (15)

We consider a potential function Φ3 (x ) so that φ3 (x ) := 1
x (log(1+1/x )+t ) . With this choice,

Cφ3,d (x) = φ3 (Fd (x))
d∑

i=1

∂Fd

∂xi
· 1

φ3 (x )

=
βγ − 1

log (1 + 1/Fd (x)) + t

d∑
i=1

xi (log(1 + 1/xi ) + t )

(βxi + 1) (xi + γ )
.

We do a change of variables. Let ri =
βxi+1
xi+γ

. Then, xi =
γ ri−1
β−ri

, βxi + 1 = ri (βγ−1)
β−ri

, and xi + γ =
βγ−1
β−ri

. Hence,

d∑
i=1

xi (log(1 + 1/xi ) + t )

(βxi + 1) (xi + γ )
=

d∑
i=1

(γri − 1) (β − ri )

ri (βγ − 1)2
·
(
log

(
1 +

β − ri

γri − 1

)
+ t

)

=
1

(βγ − 1)2

d∑
i=1

(
1 + βγ − β

ri
− γri

) (
log

(
1 +

β − ri

γri − 1

)
+ t

)
.

Furthermore, let si = log ri . As ri ∈ ( 1
γ
, β ), si ∈ (− logγ , log β ). Let

ρ (x ) :=
(
1 + βγ − βe−x − γex ) (

log

(
1 +

β − ex

γex − 1

)
+ t

)
.

Then, ρ (x ) is concave for any x ∈ (− logγ , log β ). It can be easily verified, as the second derivative
is

ρ ′′(x ) =
(β + 1) (βγ − 1)

β − 1 + ex (γ − 1)
+
βγ − 1

γ − 1
− βγ − 1

exγ − 1
− (β − 1) (βγ − 1)2

(γ − 1) (β − 1 + ex (γ − 1))2

− βte−x − γtex − e−x
(
β + e2xγ

)
log

(
1 +

β − ex

γex − 1

)
.

≤ γ (β + 1) +
βγ − 1

γ − 1
− 1 − β − 1

γ − 1
− 2t < −5 < 0, (16)
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where in the last line we used Equation (15) and the fact that 1/γ ≤ ex ≤ β . Hence, by concavity,
we have that for any xi ∈ (0, λ],

Cφ3,d (x) =
βγ − 1

log (1 + 1/Fd (x)) + t

d∑
i=1

xi (log(1 + 1/xi ) + t )

(βxi + 1) (xi + γ )
,

≤ βγ − 1

log (1 + 1/fd (x̃ )) + t
·
dx̃

(
log(1 + x̃−1) + t

)
(βx̃ + 1) (x̃ + γ )

= cφ3,d (x̃ ), (17)

where x̃ > 0 is the unique solution such that fd (x̃ ) = Fd (x).
Next, we show that there exists an α < 1 such that for any integer d and x > 0, cφ3,d (x ) < α .

In fact, by Equation (15), our choice of t , it is not hard to show that the maximum of cφ3,d (x ) is

achieved at x =
√
γ/β and d = Δc , which is 1 if λ = λc and is larger than 1 if λ > λc . However, since

the degree d has to be an integer, we can verify that for any integer 1 ≤ d ≤ 100, the maximum of
cφ3,d (x ) is cφ3,22 (x22) = 0.999983, where x22 ≈ 1.83066. If d > 100, then

cφ3,d (x ) =
d (βγ − 1)

log (1 + 1/fd (x )) + t
·
x

(
log(1 + x−1) + t

)
(βx + 1) (x + γ )

≤ C0 ·C1 < 1,

whereC0 < 1.07191 is the maximum of
x (log(1+x−1 )+t )

(βx+1)(x+γ ) for any x > 0, andC1 < 0.481875 is the maxi-

mum of d (βγ−1)

log(1+λ−1β−d )+t
for anyd > 100. Then, due to Equation (17), we have that for any xi ∈ (0, λ],

Cφ3,d (x) < α = 0.999983 < 1. This is the counterpart ofCφ2,d (x) < αλ in the proof of Theorem 3.6.
To make φ3 (x ) satisfy Conditions 1 and 2 in Definition 2.8, it is sufficient to do a simple “chop-off ”
trick to φ3 (x ) as in Equation (8). We will omit the detail here.

Proposition 4.1. For β = 0.6, γ = 2, and λ = 1002762 > λc , #2Spin(β,γ , λ) has an FPTAS.

It is easy to see that the argument above works for any β ≤ 1 < γ and βγ > 1 except Equa-
tion (16), the concavity of ρ (x ). Indeed, the concavity does not hold if, say, β = 1 and γ = 2. Nev-
ertheless, the key point here is that λc is not the tight bound for FPTAS. Short of a conjectured
optimal bound, we did not try to optimize the potential function nor the applicable range of the
proof above.

5 LIMITATIONS OF CORRELATION DECAY

In this section, we discuss some limitations of approximation algorithms for ferromagnetic two-
spin models based on correlation decay analysis.

The problem of counting independent sets in bipartite graphs (#BIS) plays an important role
in classifying approximate counting complexity. #BIS is not known to have any efficient approxi-
mation algorithm, despite many attempts. However, there is no known approximation preserving
reduction (AP-reduction) to reduce #BIS from #Sat either. It is conjectured to have intermediate
approximation complexity, and in particular, to have no FPRAS [4].

Goldberg and Jerrum [7] showed that for any βγ > 1, approximating #2Spin(β,γ , (0,∞)) can
be reduced to approximating #BIS. This is the (approximation) complexity upper bound of all fer-
romagnetic two-spin models. In contrast, by Theorem 3.1, #Δ-2Spin(β,γ , (0,∞)) has an FPTAS, if
Δ < Δc + 1. Note that when we write #2Spin(β,γ , (0,∞)) the field is implicitly assumed to be at
most polynomial in size of the graph (or in unary).

We then consider fields with some constant bounds. Recall that λint
c = (γ/β )

	Δc 
+1
2 . Let λint

c
′
=

(γ/β )
�Δc �+2

2 . Then λint
c
′
= λint

c unless Δc is an integer. By reducing to anti-ferromagnetic two-spin

ACM Transactions on Computation Theory, Vol. 10, No. 4, Article 17. Publication date: September 2018.



17:16 H. Guo and P. Lu

models in bipartite graphs, we have the following hardness result, which is first observed in Ref-
erence [16, Theorem 3].

Proposition 5.1. Let (β,γ , λ) be a set of parameters such that β < γ , βγ > 1, and λ > λint
c
′
. Then,

#2Spin(β,γ , (0, λ]) is #BIS-hard.

The reduction goes as follows. Anti-ferromagnetic Ising models with a constant non-trivial field
in bounded degree bipartite graphs are #BIS-hard, if the uniqueness condition fails [2]. Given such
an instance, we may first flip the truth table of one side. This effectively results in a ferromagnetic
Ising model in the same bipartite graph, with two different fields on each side. By a standard
diagonal transformation, we can transform such an Ising model to any ferromagnetic two-spin
model, with various local fields depending on the degree. It can be verified that for any λ > λint

c
′
,

we may pick a field in the anti-ferromagnetic Ising model to start with, such that uniqueness fails
and after the transformation, the largest field in use is at most λ.

The hardness bound in Proposition 5.1 matches the failure of uniqueness due to Proposition 2.4,
unless Δc is an integer. In contrast to Proposition 5.1, Theorem 3.6 implies that if β ≤ 1 < γ and

λ < λc = (γ/β )
Δc +1

2 , then #2Spin(β,γ , (0, λ]) has an FPTAS. Hence, Theorem 3.6 is almost optimal,
up to an integrality gap.

We note that λc is not the tight bound for FPTAS, as observed in Proposition 4.1. Since the
degree d has to be an integer, with an appropriate choice of the potential function, there is a
small interval beyond λc such that strong spatial mixing still holds. Interestingly, it seems that
λint

c is not the right bound either. Let us make a concrete example. Let β = 1 and γ = 2. Then

Δc =

√
βγ+1√
βγ−1

=
√

2+1√
2−1
≈ 5.82843. Hence, λc ≈ 10.6606 and λint

c = (2)
6+1

2 ≈ 11.3137. However, even if

λ < λint
c , the system may not exhibit spatial mixing, neither in the strong nor in the weak sense.

In fact, even the spatial mixing in the sense of Theorem 1.1 does not necessarily hold if λ < λint
c .

To see this, we take any λ ∈ [10.9759, 10.9965] so that λc < λ < λint
c . Consider an infinite tree where

at even layers, each vertex has five children, and at odd layers, each vertex has seven children.
There are more than one Gibbs measures in this tree. This can be easily verified from the fact that
the two layer recursion function f5 ( f7 (x )) has three fixed points such that x = f5 ( f7 (x )). In addi-
tion, all three fixed points x̂i satisfy that x̂i < λc for i = 1, 2, 3. Consider a tree T with alternating
degrees 6 and 8 of depth 2� (so that the number of children is alternatingly 5 and 7), and another
treeT ′ of the same structure in the first 2� layers asT but with one more layer where each vertex
has, say, 50 children. It is not hard to verify that as � increases, the marginal ratio at the root of
T converges to x̂3, but the ratio at the root of T ′ converges to x̂1. This example indicates that one
should not expect correlation decay algorithms to work all the way up to λint

c .
At last, if we consider the uniform field case #2Spin(β,γ , λ), then our tractability results still

holds. However, to extend the hardness results as in Proposition 5.1 from an interval of fields
to a uniform one, there seems to be some technical difficulty. Suppose we want to construct a
combinatorial gadget to effectively realize another field. There is a gap between λ and the next
largest possible field to realize. This is why in Reference [16] there are some extra conditions
transiting from an interval of fields to the uniform case. The observation above about the failure
of SSM in irregular trees may suggest a random bipartite construction of uneven degrees. However,
to analyze such a gadget is beyond the scope of the current article.

6 MISSING PROOFS

At last, we gather technical details and proofs that are omitted in Sections 2.2, 2.3, and 3.2.
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6.1 Details About the Uniqueness Threshold

We prove Propositions 2.3 and 2.4. Technically, by only considering the symmetric recursion

fd (x ) = λ(
βx+1
x+γ

)d , we are implicitly assuming uniform boundary conditions. If there is more than

one fixed point for fd (x ), then clearly there are multiple Gibbs measures. Hence, fd (x ) having
only one fixed point is a necessary condition for the uniqueness condition in Td+1. Moreover, it is
also sufficient. The reason is that the influence on the root of an arbitrary boundary condition is
bounded between those of the all “0” and all “1” boundary conditions.

First, do some calculation here. Take the derivative of fd (x ):

f ′d (x ) =
d (βγ − 1) fd (x )

(βx + 1) (x + γ )
. (18)

Then take the second derivative:
f ′′
d

(x )

f ′
d

(x )
=

f ′
d

(x )

fd (x )
− β

βx + 1
− 1

x + γ
=
d (βγ − 1) − βγ − 1 − 2βx

(βx + 1) (x + γ )
.

Therefore, at x∗ := d (βγ−1)−(βγ+1)
2β

, f ′′
d

(x∗) = 0. It is easy to see when d <
βγ+1
βγ−1 , f ′′

d
(x ) < 0 for all

x > 0. So fd (x ) is concave and therefore has only one fixed point.
Since fd (x ) has only one inflection point, there are at most three fixed points. Moreover, the

uniqueness condition is equivalent to say that for all fixed points x̂d of fd (x ), f ′
d

(x̂d ) < 1. For a
fixed point x̂d , we plug it in Equation (18):

f ′d (x̂d ) =
d (βγ − 1)x̂d

(βx̂d + 1) (x̂d + γ )
.

Recall that Δc :=
√

βγ+1√
βγ−1

. If d < Δc , then we have that for any x ,

(βx + 1) (x + γ ) − d (βγ − 1)x = βx2 + ((βγ + 1) − d (βγ − 1))x + γ

> βx2 +

(
βγ + 1 −

(√
βγ + 1

)2
)
x + γ

=

(√
βx − √γ

)2

≥ 0.

Hence, (βx + 1) (x + γ ) > d (βγ − 1)x . In particular, f ′
d

(x̂d ) < 1 for any fixed point x̂d and the
uniqueness condition holds. This proves Proposition 2.3.

To show Proposition 2.4, we may assume that d ≥ Δc . We may also assume that β ≤ γ . The
equation (βx + 1) (γ + x ) = d (βγ − 1)x has two solutions, which are

x0 = x∗ −
√

((βγ + 1) − d (βγ − 1))2 − 4βγ

2β

and x1 = x∗ +

√
((βγ + 1) − d (βγ − 1))2 − 4βγ

2β
.

Notice that both of them are positive, since x0 + x1 = 2x∗ > 0 and x0x1 = γ/β . As d goes to∞,

x0 = o(1), x1 = 2x∗ − o(1) =
d (βγ − 1) − (βγ + 1)

β
− o(1). (19)

Moreover,

d (βγ − 1)x

(βx + 1) (γ + x )
> 1 if and only if x0 < x < x1. (20)
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We show that fd (x0) > x0 or fd (x1) < x1 is equivalent to the uniqueness condition. First, we
assume this condition does not hold, that is fd (x0) ≤ x0 and fd (x1) ≥ x1. If any of the equation
holds, then x0 or x1 is a fixed point and the derivative is 1. So, we have non-uniqueness. Other-
wise, we have fd (x0) < x0 and fd (x1) > x1. Since x0 < x1, there is some fixed point x̃ satisfying
fd (x̃ ) = x̃ and x0 < x̃ < x1. The second inequality implies that f ′

d
(x̃ ) > 1 via Equation (20) and

non-uniqueness holds.
To show the other direction, if fd (x0) > x0, then

f ′d (x0) =
d (βγ − 1) f (x0)

(βx0 + 1) (x0 + γ )
>

d (βγ − 1)x0

(βx0 + 1) (x0 + γ )
= 1.

Assume for contradiction that fd (x ) has three fixed points, denoted by x̃0 < x̃1 < x̃2. Then, the
middle fixed point x̃1 satisfies f ′

d
(x̃1) > 1. Therefore, x̃1 > x0 by Equation (20) and there are two

fixed points larger than x0. However, for x0 < x ≤ x∗, f ′
d

(x ) > 1 and fd (x0) > x0. Hence, there is
no fixed point in this interval. For x > x∗, the function is concave and has exactly one fixed point.
So there is only 1 fixed point larger than x0. Contradiction. The case that fd (x1) < x1 is similar.

These two conditions could be rewritten as

λ >
x0 (x0 + γ )d

(βx0 + 1)d
(21)

and

λ <
x1 (x1 + γ )d

(βx1 + 1)d
. (22)

Notice that the right-hand side has nothing to do with λ in both Equations (21) and (22).
We want to see how condition Equations (21) and (22) change as d changes. Treat d as a contin-

uous variable. Define

дi (d ) :=
xi (xi + γ )d

(βxi + 1)d
,

where i = 0, 1 and xi is defined above depending on β , γ and d . Take the derivative:

д′i (d )

дi (d )
=
∂xi

∂d

(
1

xi
+

d

xi + γ
− dβ

βxi + 1

)
+ log(xi + γ ) − log(βxi + 1)

=
∂xi

∂d

(
1

xi
+

d (1 − βγ )

(xi + γ ) (βxi + 1)

)
+ log

xi + γ

βxi + 1

=
∂xi

∂d

(
1

xi
− 1

xi

)
+ log

xi + γ

βxi + 1
= log

xi + γ

βxi + 1
.

If β ≤ 1, then these two functions are increasing in d . Recall that Δc =

√
βγ+1√
βγ−1

, and λint
c =

д1 (	Δc 
) = (γ/β )
	Δc +1


2 . Thus, if λ < λint
c , Equation (22) holds for all integers d . However, x0 = o(1)

by Equation (19), and

д0 (d ) =
x0 (x0 + γ )d

(βx0 + 1)d
=

γ

βx1
·
(
x0 + γ

βx0 + 1

)d

>
γ

2βx∗
·
(
x0 + γ

βx0 + 1

)d

=
γ

d (βγ − 1) − (βγ + 1)
·
(
x0 + γ

βx0 + 1

)d

→ ∞ as d goes to∞.
Hence, there is no λ such that Equation (21) holds for all integers d .
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If β > 1, then neither Equation (21) nor Equation (22) can hold for all integers d . Since x0 = o(1)
by Equation (19), similar to the argument above, we have that

д0 (d ) =
x0 (x0 + γ )d

(βx0 + 1)d
>

γ

d (βγ − 1) − (βγ + 1)
·
(
x0 + γ

βx0 + 1

)d

→ ∞ as d goes to∞,
which rules out Equation (21). Ruling out Equation (22) is completely analogous by noticing that
x1 → ∞ as d goes to∞ by Equation (19), and thus д1 (d ) → 0. This proves Proposition 2.4.

6.2 Details About the Potential Method

In this section, we provide missing details and proofs in Section 2.3.
To study correlation decay on trees, we use the standard recursion given in Equation (3). Recall

thatT is a tree with rootv . Verticesv1, . . . ,vd ared children ofv , andTi is the subtree rooted byvi .
A configuration σΛ is on a subset Λ of vertices, and Rσ

T
denote the ratio of marginal probabilities

at v given a partial configuration σ on T .
We want to study the influence of another set of vertices, say S , upon v . In particular, we want

to study the range of ratios at v over all possible configurations on S . To this end, we define the
lower and upper bounds as follows. Notice that as S will be fixed, we may assume that it is a subset
of Λ.

Definition 6.1. Let T ,v,Λ,σΛ, S,R
σ
T

be as above. Define Rv := minτΛ R
τΛ

T
and Rv := maxτΛ R

τΛ

T
,

where τλ can only differ from σΛ on S . Define δv := Rv − Rv .

Our goal is thus to prove that δv ≤ exp(−Ω(dist(v, S ))). We can recursively calculate Rv and Rv

as follows. The base cases are:

(1) v ∈ S , in which case Rv = 0 and Rv = ∞ and δv = ∞;
(2) v ∈ Λ \ S , i.e., v is fixed to be the same value in all τΛ, in which case Rv = Rv = 0 (or∞) if

v is fixed to be blue (or green), and δv = 0;
(3) v � Λ and v is the only node of T , in which case Rv = Rv = λ and δv = 0.

For v � Λ, since Fd is monotonically increasing with respect to any xi for any βγ > 1,

Rv = Fd (Rv1 , . . . ,Rvd
) and Rv = Fd (Rv1 , . . . ,Rvd ),

where Rvi
and Rvi are recursively defined lower and upper bounds of RτΛ

Ti
for 1 ≤ i ≤ d .

Our goal is to show that δv decays exponentially in the depth of the recursion under certain
conditions such as the uniqueness. A straightforward approach would be to prove that δv contracts
by a constant ratio at each recursion step. This is a sufficient but not necessary condition for the
exponential decay. Indeed, there are circumstances that δv does not necessarily decay in every
step but does decay in the long run. To amortize this behaviour, we use a potential function Φ(x )
and show that the correlation of a new recursion decays by a constant ratio.

To be more precise, the potential function Φ : R+ → R+ is a differentiable and monotonically
increasing function. It maps the domain of the original recursion to a new one. Let yi = Φ(xi ). We
want to consider the recursion for yi ’s. The new recursion function, which is the pullback of Fd ,
is defined as

Gd (y1, . . . ,yd ) := Φ(Fd (Φ−1 (x1), . . . ,Φ−1 (xd ))).

The relationship between Fd (x) and Gd (y) is illustrated in Figure 1.
We want to prove Lemmas 2.6 and 2.10. To do so, we also define the upper and lower bounds

of y. Define yv = Φ(Rv ) and accordingly yvi
= Φ(Rvi

), for 1 ≤ i ≤ d , as well as yv = Φ(Rv ) and
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yvi = Φ(Rvi ), for 1 ≤ i ≤ d . We have that

yv = Gd (yv1 , . . . ,yvd
) and yv = Gd (yv1 , . . . ,yvd ). (23)

Let εv = y
v − yv . For a good potential function, exponential decay of εv is sufficient to imply that

of δv .

Lemma 6.2. Let Φ(x ) be a good potential function for the field λ at v . Then, there exists a constant

C such that δv ≤ Cεv for any dist(v, S ) ≥ 2.

Proof. By Equation (23) and the Mean Value Theorem, there exists an R̃ ∈ [Rv ,R
v ] such that

εv = Φ(Rv ) − Φ(Rv ) = Φ′(R̃) · δv = φ (R̃) · δv . (24)

Since dist(v, S ) ≥ 2, we have that Rv ≥ λγ−d and Rv ≤ λβd . Hence, R̃ ∈ [λγ−d , λβd ], and by Condi-
tion 1 of Definition 2.5, there exists a constantC1 such that φ (R̃) ≥ C1. Therefore, δv ≤ 1/C1εv . �

The next lemma explains Condition 2 of Definition 2.5.

Lemma 6.3. Let Φ(x ) be a good potential function with contraction ratio α . Then,

εv ≤ α max
1≤i≤d

{εvi
}.

Proof. First, we use Equation (23):

εv = y
v − yv = Gd (yv1 , . . . ,yvd ) −Gd (yv1 , . . . ,yvd

).

Let y1 = (yv1 , . . . ,yvd ) and y0 = (yv1 , . . . ,yvd
). Let z(t ) = ty1 + (1 − t )y0 be a linear combination

of y0 and y1 where t ∈ [0, 1]. Then, we have that

εv = Gd (z(1)) −Gd (z(0)).

By the Mean Value Theorem, there exist t̃ such that εv =
d Gd (z(t ))

d t
|t=t̃ . Let ỹi = t̃yvi + (1 − t̃ )yvi

for all 1 ≤ i ≤ d . Then, we have that

εv =
���∇Gd (ỹ1, . . . , ỹd ) · (εv1 , . . . , εvd

)��� . (25)

It is straightforward to calculate that

∂Gd (y)

∂yi
=
φ (Fd (R))

φ (Ri )
· ∂Fd (R)

∂Ri
, (26)

where Ri = Φ−1 (yi ) and y and R are vectors composed by yi ’s and Ri ’s. Plugging Equation (26)
into Equation (25), we get that

εv = φ (Fd (R̃)) ·
d∑

i=1

�����

∂Fd

∂Ri

�����

1

φ (R̃i )
· εvi

≤ Cφ,d (R̃1, . . . , R̃d ) · max
1≤i≤d

{εvi
} ≤ α max

1≤i≤d
{εvi
},

where R̃i = Φ−1 (ỹi ), R̃ is the vector composed by R̃i ’s, and in the last line we use Condition 2 of
Definition 2.5. �

Note that the two conditions of a good potential function does not necessarily deal with all cases
in the tree recursion. At the root, we have one more child than other vertices in a SAW tree. Also, if
v has a child u ∈ S , then εu = ∞ and the range in both conditions of Definition 2.5 does not apply.
To bound the recursion at the root, we have the following straightforward bound of the original
recursion.
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Lemma 6.4. Let (β,γ ) be two parameters such that βγ > 1 and β < γ . Let v be a vertex and vi be

its children for 1 ≤ i ≤ d . Suppose δvi
≤ C for some C > 0 and all 1 ≤ i ≤ d . Then,

δv ≤ dλv (βγ − 1)γ−1βdC .

Proof. It is easy to see that γ ≥ 1. By the same argument as in Lemma 6.3 and Equation (3),
there exists xi ’s such that

δv =
���∇Fd (x1, . . . ,xd ) · (δv1 , . . . ,δvd

)��� ≤ C
d∑

i=1

�����

∂Fd (x)

∂xi

�����
,

where x is the vector composed by xi ’s. Then, we have that
�����

∂Fd (x)

∂xi

�����
=

d (βγ − 1)Fd (x)

(xi + γ ) (βxi + 1)
≤ dλv (βγ − 1)γ−1βd ,

where we use the fact that Fd (x) ≤ λvβ
d for any xi ∈ [0,∞) and βγ > 1. The lemma follows. �

Now, we are ready to prove Lemma 2.6.

Proof of Lemma 2.6. Given G and a partial configuration σΛ on a subset Λ ⊆ V of vertices, we

first claim that we can approximate pσΛ
v within additive error ε deterministically in time O (ε

log Δ
log α ).

We construct the SAW tree T = TSAW (G,v ). Due to Proposition 2.1, we only need to approximate
pσΛ

v in T , with respect to v and an arbitrary vertex set S . We will also use σΛ to denote the config-
uration inT on ΛSAW . Let S be the set of vertices whose distance to v is larger than t , where t is a
parameter that we will specify later. Let δv be defined as in Definition 6.1 with respect to T , v , Λ,
σΛ, and S . We want to show that δv = O (λα t ).

The maximum degree of T is at most Δ. Thus the root v has at most Δ children in T , and any
other vertex in T has at most Δ − 1 children. Assume v has k ≥ 1 children, as otherwise we are
done. We may also assume thatv � S and let t = dist(v, S ) − 1 ≥ 1. We recursively construct a path
u0 = v , u1, . . . ,ul of length l ≤ t as follows. Given ui , if there is no child of ui , then we stop and let
l = i . Otherwise, ui has at least one child. If i = t , then we stop and let l = t . Otherwise, l < t and
let ui+1 be the child of ui such that εui+1 takes the maximum ε among all children of ui . In other
words, by Lemma 6.3, we have that

εui
≤ αεui+1 , (27)

for all 1 ≤ i ≤ l − 1. Notice that Equation (27) may not hold for i = 0, since v = u0 has possibly Δ
children.

First, we note that for all 1 ≤ i ≤ l , dist(v,ui ) = i ≤ l ≤ t , and therefore ui � S . If we met any
vertex ul with no child, then we claim that εul

= 0. This is because ul is either a free vertex with
no child or ul ∈ Λ but ul � S . However, since εul

takes the maximum ε among all children of ul−1,
we have that for all children of ui−1, ε = 0, which implies that εui−1 = 0. Recursively, we get that
εv = εu0 = 0 and clearly the theorem holds by Equation (24).

Hence, we may assume that l = t . Since ul � S , we have that δul
≤ λul

β−(Δ−1) if β > 1, or δul
≤

λul
if β ≤ 1. Hence, by Equation (24) and Condition 1 in Definition 2.5, we have that εul

≤ C0 for
some constant C0. Applying Equation (27) inductively, we have that

εu1 ≤ α lεul
≤ α tC0.

Hence, by Lemma 6.2, there exists another constant C1 such that δu1 ≤ α tC1. To get a bound on
δu0 , we use Lemma 6.4, which states that

δu0 ≤ d0λv (βγ − 1)γ−1βd0δu1 ≤ d0λv (βγ − 1)γ−1βd0α tC1 = O (λα t ),

where d0 ≤ Δ is the degree of v = u0.
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Hence, the recursive procedure returns Rv and Rv such that Rv ≤ RσΛ

T
≤ Rv , and Rv − Rv =

O (λα t ), where α < 1 is the contraction ratio. Note that RσΛ

T
= RσΛ

G,v =
p

σΛ
v

1−p
σΛ
v

. Let p0 =
Rv

Rv+1 and

p1 =
Rv

Rv+1 . Then, p0 ≤ pσΛ
v ≤ p1 and

p1 − p0 =
Rv

Rv + 1
− Rv

Rv + 1
≤ Rv − Rv = O (λα t ). (28)

The recursive procedure runs in timeO (Δt ), since it only needs to construct the first t levels of the
self-avoiding walk tree. For any ε > 0, let t = O (logα ε − logα λ) so that Rv − Rv < ε . This gives an

algorithm that approximates pσΛ
v within an additive error ε in time O (( ε

λ
)

log Δ
log α ).

Then, we use self-reducibility to reduce computing Zβ,γ ,π (G ) to computing conditional mar-
ginal probabilities. To be specific, let σ be a configuration on a subset of V and τ be sampled
according to the Gibbs measure. Let pσ

v := Pr (τ (v ) = 1 | σ ) be the conditional marginal proba-
bility. We can compute Zβ,γ ,π (G ) from pσ

v by the following standard procedure. Let v1, . . . ,vn

enumerate vertices in G. For 0 ≤ i ≤ n, let σi be the configuration fixing the first i vertices
v1, . . . ,vi as follows: σi (vj ) = σi−1 (vj ) for 1 ≤ j ≤ i − 1 and σi (vi ) is fixed to the spin s so that
pi := Pr (τ (vi ) = s | σi−1) ≥ 1/3. This is always possible, because clearly

Pr (τ (vi ) = 0 | σi−1) + Pr (τ (vi ) = 1 | σi−1) = 1.

In particular, σn ∈ {0, 1}V is a configuration of V . The Gibbs measure of σn is ρ (σn ) = w (σn )
Zβ ,γ ,π (G ) .

However, we can rewrite ρ (σn ) = p1p2 · · ·pn by conditional probabilities. Thus, Zβ,γ ,π (G ) =
w (σn )

p1p2 · · ·pn
. The weightw (σn ) given in Equation (1) can be computed exactly in time polynomial in n.

Note that pi equals to either pσi−1
vi

or 1 − pσi−1
vi

. Since we can approximate pσΛ
v within an additive er-

ror ε in timeO (( ε
λ

)
log Δ
log α ), the configurations σi can be efficiently constructed, which guarantees that

allpi ’s are bounded away from 0. Thus, the productp1p2 · · ·pn can be approximated within a factor

of (1 ± nε ′) in time O (n( ε ′

λ
)

log Δ
log α ). Now let ε ′ = ε

n
. We get the claimed FPTAS for Zβ,γ ,π (G ). �

Lemma 2.9 follows almost immediately from Lemmas 6.2, 6.3, and 6.4 as in the proof above. The
only issue is that the range of x should be restricted to (0, λ]. This is guaranteed by Claim 3.4.

Finally, we show Lemma 2.10.

Proof of Lemma 2.10. By the same proof of Lemma 2.6, we only need to approximate the
marginal probability at the root v of a tree T . By Condition 2 of Definition 2.8, Cφ,d (x1, . . . ,xd ) <

α 	logM (d+1)
 . Denote by B (�) the set of all vertices whose M-based depths of v is at most � in T .
Hence, |B (�) | ≤ M� . Let S = {u | dist(u,B (�)) > 1}, which is essentially the same S as in Lemma 2.6,
but under a different metric. We can recursively compute upper and lower bounds Rv and Rv of
RσΛ

T
such that Rv ≤ RσΛ

T
≤ Rv , with the base case that for any vertex u ∈ S trivial bounds Ru = 0

and Ru = ∞ are used.
We proceed as in the proof of Lemma 2.6. Without loss of generality, we construct a path

u0u1 · · ·uk inT from the root u0 = v to a uk with �M (uk−1) ≤ � and �M (uk ) > �. As in the proof of
Lemma 6.3, εuj

≤ C
φ

dj
(x j,1, . . . ,x j,dj

) · εuj+1 for all 0 ≤ j ≤ k − 1, where dj is the number of children

of uj and x j,i ∈ [0,∞), 1 ≤ i ≤ dj . Hence, we have that

εv ≤ εuk
·

k−1∏
j=0

α 	logM (dj+1)
 ≤ εuk
· α

∑k−1
j=0 	logM (dj+1)


= εuk
· α �M (uk ) ≤ εuk

· α � .
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Note that dist(uk ,B (�)) = 1, and hence uk � S . So, δuk
< λuk

≤ λ. By Equation (24), we have that

εuk
≤ φ (R̃)δuk

, for some R̃ ∈ [λuk
γ−dk , λuk

βdk ]. Hence, εuk
< C2λ by Condition 1 of Definition 2.8,

and εv < λα �C2. By Equation (24) and Condition 1 of Definition 2.8 again, we have that δv ≤
λα �C2/C1.

The rest of the proof goes the same as that of Lemma 2.6. The running time has an extra n2

factor, since we need to go down two more levels (in the worst case) outside of B (�). �

6.3 Proofs of Lemma 3.2 and Lemma 3.3

In this section, we show Lemmas 3.2 and 3.3. We prove Lemma 3.2 first and then use it to show
Lemma 3.3.

Proof of Lemma 3.2. It is trivial if β ≤ 1. Now, assume that β > 1. As βx+1
x+γ

is increasing in x ,
it is equivalent to show that

γ − 1

β − 1
≥ λc =

(
γ

β

) √βγ√
βγ −1

⇔ log(γ − 1) − log(β − 1) ≥
√
βγ√

βγ − 1
log

(
γ

β

)
.

Let γ = k2β with k ≥ 1. We only need to show that r (k ) ≥ 0 for k ≥ 1, where r (k ) is defined as

r (k ) := log(βk2 − 1) − log(β − 1) − 2βk

βk − 1
logk .

Since r (1) = 0, it is enough to prove that r (k ) is increasing for k ≥ 1. It can be easily verified as

r ′(k ) =
2βk

βk2 − 1
− 2β

βk − 1
+

2β

(βk − 1)2
logk

=
2β

(βk − 1)2 (βk2 − 1)

(
(βk2 − 1) logk − (k − 1) (βk − 1)

)
.

So, it is sufficient to show that

(βk2 − 1) logk − (k − 1) (βk − 1) ≥ 0.

Since k ≥ 1, we have that logk ≥ 1 − 1
k

. It implies that

(βk2 − 1) logk − (k − 1) (βk − 1) ≥ (βk2 − 1)
(
1 − 1

k

)
− (k − 1) (βk − 1) =

(k − 1)2

k
≥ 0.

This completes the proof. �

Then, we show Lemma 3.3.

Proof of Lemma 3.3. Letд(x ) := (βγ − 1)x log λc

x
− (βx + 1) (x + γ ) log x+γ

βx+1 . Hence, it is equiv-

alent to show that д(x ) ≤ 0 for all 0 < x < λc . Take the derivative of д(x ), and we have that

д′(x ) = (βγ − 1) (log
λc

x
− 1) − (2βx + βγ + 1) log

x + γ

βx + 1

− (βx + 1) (x + γ )

(
1

x + γ
− β

βx + 1

)

= (βγ − 1) log
λc

x
− (2βx + βγ + 1) log

x + γ

βx + 1
.

By direct calculation, д(
√

γ

β
) = 0 and д′(

√
γ

β
) = 0. Then, we prove Equation (5) for the case of

0 < x <
√

γ

β
and

√
γ

β
< x < λc separately.
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If 0 < x <
√

γ

β
, then it is sufficient to verify that д′(x ) > 0. We only need to show that д′(x ) is

decreasing, since д′(
√

γ

β
) = 0. It is easily verified by taking the derivative again:

д′′(x ) = −βγ − 1

x
− 2β log

x + γ

βx + 1
− (2βx + βγ + 1)

(
1

x + γ
− β

βx + 1

)

= −2β log
x + γ

βx + 1
− (βγ − 1)

(
1

x
− 2βx + βγ + 1

(x + γ ) (βx + 1)

)

= −2β log
x + γ

βx + 1
− (βγ − 1)

γ − βx2

x (x + γ ) (βx + 1)
< 0,

where the last inequality uses the fact that x+γ

βx+1 ≥ 1 by Lemma 3.2 and x <
√

γ

β
.

If
√

γ

β
< x < λc , then we show Equation (5) directly. First notice that as x �

√
γ

β
,

x

(βx + 1) (x + γ )
=

1

βx +
γ

x
+ βγ + 1

<
(√

βγ + 1
)−2

,

Given this, to get Equation (5), it is sufficient to show that h(x ) < 0, where

h(x ) :=

√
βγ − 1√
βγ + 1

log
λc

x
− log

x + γ

βx + 1
.

In fact, h(x ) is a decreasing function as

h′(x ) = −
√
βγ − 1

x (
√
βγ + 1)

− 1

x + γ
+

β

βx + 1

= −
(
√
βγ − 1)

(
(x + γ ) (βx + 1) − (

√
βγ + 1)2x

)
x (

√
βγ + 1) (x + γ ) (βx + 1)

= −
(
√
βγ − 1)

(√
βx − √γ

)2

x (
√
βγ + 1) (x + γ ) (βx + 1)

≤ 0.

Notice that h(
√

γ

β
) = 0. It implies that h(x ) < 0 for all x >

√
γ

β
. This completes the proof. �
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