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Abstract

Holant problems are a general framework to study the
algorithmic complexity of counting problems. Both
counting constraint satisfaction problems and graph ho-
momorphisms are special cases. All previous results of
Holant problems are over the Boolean domain. In this
paper, we give the first dichotomy theorem for Holant
problems for domain size greater than two. We dis-
cover unexpected tractable families of counting prob-
lems, by giving new polynomial time algorithms. This
paper also initiates holographic reductions in domains
of size greater than two. This is our main algorithmic
technique, and is used for both tractable families and
hardness reductions. The dichotomy theorem is the fol-
lowing: For any complex-valued symmetric function F
with arity 3 on domain size 3, we give an explicit crite-
rion on F, such that if F satisfies the criterion then the
problem Holant∗(F) is computable in polynomial time,
otherwise Holant∗(F) is #P-hard.

1 Introduction

The study of computational complexity of counting
problems has been a very active research area recently.
Three related frameworks in which counting problems
can be expressed as partition functions have received
the most attention: Graph Homomorphisms (GH),
Constraint Satisfaction Problems (CSP) and Holant
Problems.

Graph Homomorphism was first defined by
Lovász [38]. It captures a wide variety of graph prop-
erties. Given any fixed k × k symmetric matrix A over
C, the partition function ZA maps any input graph
G = (V,E) to ZA(G) =

∑
ξ:V→[k]

∏
(u,v)∈EAξ(u),ξ(v).

When A is a 0-1 matrix, then the product
∏

(u,v)∈E
is essentially a Boolean And function. The product
value

∏
(u,v)∈EAξ(u),ξ(v) = 0 or 1, and it is 1 iff ev-

ery edge (u, v) ∈ E is mapped to an edge in the graph
H whose adjacency matrix is A. Hence for a 0-1 ma-
trix A, ZA(G) counts the number of homomorphisms
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from G to H. For example, if A =
[

1 1
1 0

]
then ZA(G)

counts the number of Independent Sets in G. If
A =

[
0 1 1
1 0 1
1 1 0

]
then ZA(G) is the number of valid 3-

colorings. When A is not 0-1, ZA(G) is a weighted
sum of homomorphisms. Each A defines a graph prop-
erty on graphs G. Clearly if G and G′ are isomorphic
then ZA(G) = ZA(G′). While individual graph proper-
ties are fascinating to study, Lovász’s intent is to study
a wide class of graph properties representable as graph
homomorphisms. The use of more general matrices A
brings us into contact with another tradition, called par-
tition functions of spin systems from statistical physics

(see [3, 39]). The case of a 2 × 2 matrix A =
[
β 1
1 γ

]
is called a 2-spin system, and the special case β = γ is
the Ising model [32, 33, 29]. The Potts model [28] with
interaction strength γ is defined by a k × k matrix A
where all off-diagonal entries equal to 1 and all diagonal
entries equal to 1 + γ. In classical physics, the matrix
A is always real-valued. However, in a quantum system
for which complex number is the right language, the
partition function is in general complex-valued [25]. In
particular, if the physics model is over a discrete graph
and is non-orientable, then the edge weights are given
by a symmetric complex matrix. We will see that the
use of complex numbers is not just a modeling issue,
it provides an inner unity in the algorithmic theory of
partition functions.

A more general framework than GH is called count-
ing CSP. Let F be any finite set of (complex-valued)
constraint functions defined on some domain set D. It
defines a counting CSP problem #CSP(F): An input
consists of a bipartite graph G = (X,Y,E), each x ∈ X
is a variable on D, each y ∈ Y is labeled by a constraint
function f ∈ F , and the edges in E indicate how each
constraint function is applied. The output is the sum of
product of evaluations of the constraint functions over
all assignments for the variables [18, 7, 20, 6, 14, 22, 11].
Again if all constraint functions in F are 0-1 valued then
it counts the number of solutions. In general, this sum of
product a.k.a. partition function is a weighted sum of so-
lutions, and has occupied a central position. It reaches
many areas ranging from AI, machine learning, tensor
networks, statistical physics and coding theory. Note
that GH is the special case of CSP where F consists of
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a single binary symmetric function.
The strength of these frameworks derives from the

fact that they can express many problems of interest
and simultaneously it is possible to achieve a complete
classification of its worst case complexity.

While GH (or spin systems) can express a great va-
riety of natural counting problems, Freedman, Lovász
and Schrijver [26] showed that GH cannot express the
problem of counting Perfect Matchings. It is well
known that the FKT algorithm [36, 42] can count the
number of perfect matchings in a planar graph in poly-
nomial time. This is one basic component of holograph-
ic algorithms recently introduced by Valiant [44, 43].
(The second basic component is holographic reduction.)
To capture this extended class of problems typified by
Perfect Matchings, the framework of Holant prob-
lems was introduced [13, 14, 15]. Briefly, an input in-
stance of a Holant problem is a graph G = (V,E) where
each edge represents a variable and each vertex is la-
beled by a constraint function. The partition function
is again the sum of product of the constraint function
evaluations, over all edge assignments. E.g., if edges
are Boolean variables (i.e., domain size 2), and the con-
straint function at every vertex is the Exact-One func-
tion which is 1 if exactly one incident edge is assigned
true and 0 otherwise, then the partition function counts
the number of perfect matchings. If each vertex has the
At-Most-One function then it counts all (not neces-
sarily perfect) matchings. It can be shown easily that
the Holant framework can simulate spin systems but,
as shown by [26], the converse is not true. The Holant
framework turns out to be a very natural setting and
captures many interesting problems. E.g., it was inde-
pendently discovered in coding theory, where it is called
Normal Factor Graphs or Forney Graphs [34, 35, 2, 1].

A complexity dichotomy theorem for counting prob-
lems classifies every problem within a class to be either
in P or #P-hard. For GH, this is proved for ZA for
all symmetric complex matrices A [10]. This is a cul-
mination of a long series of results [21, 8, 27]. The
proof of [10] is difficult, but the tractability criterion
is very explicit: ZA is in polynomial time if A is a
suitable rank-one modification of a tensor product of
Fourier matrices, and is #P-hard otherwise. Explicit
dichotomy theorems were also proved for counting CSP
on the Boolean domain (i.e., |D| = 2): unweighted [18],
non-negative weighted [20], real weighted [4], and final-
ly complex weighted [14], where holographic reductions
played an important role in the final result. Complex
numbers make their appearance naturally as eigenval-
ues, and provide an internal logic to the theory, even if
one is only interested in 0-1 valued constraint functions.

When we go from the Boolean domain to domain

size greater than two, there is a huge increase in
difficulty to prove dichotomy theorems. This is already
seen in decision CSP, where the dichotomy (i.e., any
decision CSP is either in P or NP-complete) for the
Boolean domain is Schaefer’s theorem [40], but the
dichotomy for domain size 3 is a major achievement
by Bulatov [5]. A long standing conjecture by Feder
and Vardi [24] states that a dichotomy for decision
CSP holds for all domain sizes, but this is open for
domain size greater than three. The assertion that every
decision CSP is either solvable in polynomial time or
NP-complete is by no means obvious, since assuming P
6= NP, Ladner showed that NP contains problems that
are neither in P nor NP-complete [37]. This is also valid
for P versus #P.

With respect to counting problems, for any finite
set of 0-1 valued functions F over a general domain,
Bulatov [6] proved a dichotomy theorem for #CSP(F),
which uses deep results from Universal Algebra. Dyer
and Richerby [22, 23] gave a more direct proof which
has the advantage that their tractability criterion is
decidable. Decidable dichotomy theorems are more
desirable since they tell us not only every F belongs
to either one or the other class, but also how to decide
for a given F which class it belongs to. A decidable
dichotomy theorem for #CSP(F), where all functions
in F take non-negative values, is given in [11]. Finally
a dichotomy theorem for all complex-valued #CSP(F)
is proved in [9]. This last dichotomy is not known to be
decidable.

More than giving a formal classification, the deeper
meaning of a dichotomy theorem is to provide a com-
prehensive structural understanding as to what makes
a problem easy and what makes it hard. This deeper
understanding goes beyond the validity of a dichoto-
my, and even beyond the decidability of the dichotomy
criterion. Decidabilitty is: Given F , decide whether it
satisfies the tractability criterion so that #CSP(F) is in
P. Ideally we hope for dichotomy theorems that are ex-
plicit in the sense that the tractability criteria provide a
mathematical characterization that can be applied sym-
bolically to an arbitrary F . An explicit dichotomy can
also be readily used to prove broader dichotomy theo-
rems, as we will see in this paper. The known dichoto-
my theorems for GH and for CSP on general domain-
s have very different flavors. Dichotomy theorems for
#CSP(F) for all domain sizes greater than two are not
explicit. The tractability criterion is infinitary. This
is in marked contrast with the dichotomy theorems for
GH. For Holant problems all previous results are over
the Boolean domain and are mostly explicit. In this
paper, we give the first dichotomy theorem for Holan-
t problems for domain size greater than two, and it is
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explicit.
Our main theorem can be stated as follows: For

any complex-valued symmetric function F with arity 3
on domain size 3, we give an explicit criterion on F,
such that if F satisfies the criterion then the problem
Holant∗(F) is computable in polynomial time, other-
wise Holant∗(F) is #P-hard. (Formal definitions will
be given in Section 2.) It is known that in the Holant
framework any set of binary functions is tractable. A
ternary function is the basic setting in the Holant frame-
work where both tractable and intractable cases occur.
A single ternary function in the Holant framework is the
analog of GH as the basic setting in the CSP framework
with a single binary function. Therefore this case is in-
teresting in its own right. Furthermore, as demonstrat-
ed many times in the Boolean domain [14, 15, 12, 30, 31],
a dichotomy for a single ternary function serves as the s-
tarting point for more general dichotomies in the Holant
framework.

In order to prove this dichotomy theorem, we have
to discover new tractable classes of Holant problems,
and design new polynomial time algorithms. Many in-
tricacies of the interplay between tractability and in-
tractability do not occur in the Boolean domain. How-
ever these new algorithms actually provide fresh insight
to our previous dichotomy theorems for the Boolean
domain. They offer a deeper and more complete un-
derstanding of what makes a problem easy and what
makes it hard.

Our main algorithmic innovation is to initiate the
theory of holographic reductions in domain size three
using 3 × 3 matrices. It is a recurring theme in our
proof techniques here. This is a new development; al-
l previous work on holographic reductions have been
focused on the Boolean domain. Holographic transfor-
mation offers a perspective on internal connections and
equivalences between different looking problems, that is
unavailable by any other means. In particular since it
naturally uses eigenvalues and eigenvectors, the field of
complex numbers C is the natural setting to formulate
the class of problems, even if one is only interested in
0-1 valued or non-negative valued constraint function-
s. Using complex-valued constraints in defining Holant
problems we can see the internal logical connections be-
tween various problems. Completely different looking
problems can be seen as one and the same problem un-
der holographic transformations. The proof of our di-
chotomy theorem would be impossible without working
over C. Even the dichotomy criterion would be impos-
sible to state without it. To quote Jacques Hadamard:
“The shortest path between two truths on the real line
passes through the complex plane.”

Suppose our domain set is {B,G,R}, named for

the three colors Blue, Green and Red. We isolate
several classes of tractable cases of F. One of them
is a generalization of Fibonacci signatures from the
Boolean domain, under an orthogonal transformation.
Another involves a concept called isotropic vectors,
which self-annihilates under dot product. The third
type involves a more intricate interplay between an
isotropic vector in some dimension and another function
primarily “living” in the other dimensions. This last
type was only discovered after we failed to push through
certain hardness proofs.

For hardness proofs, the first main idea is to con-
struct a binary function which acts as an Equality
function when restricted to {G,R}, and is zero else-
where. This construction allows us to restrict a func-
tion on {B,G,R} to a domain of size 2, and employ
the known (and explicit) dichotomy theorems for the
Boolean domain. The plan is to use it to restrict F to
{G,R} and, assuming it is non-degenerate, to anchor
the entire hardness proof on that. Here it is crucial
that the known Boolean domain dichotomy is explicit.
This part of the proof is quite demanding and heavi-
ly depends on holographic reductions. A central motif
is to show that after a holographic reduction, F must
possess fantastic regularity to escape #P-hardness.

What perhaps took us by surprise is that when
F restricted to {G,R} is degenerate, there is still
considerable technical difficulty remaining. These are
eventually overcome by using unsymmetric functions (in
the full paper [17], this part of the proof starts from
Section 5.4.)

This work has been a marathon for us. During the
process, repeatedly, we failed to clinch the hardness
proof for some subclasses of functions and then new
tractable cases were found. So we had to reformulate
the final dichotomy several times. The discovery process
is mutually reinforcing between new algorithms and
hardness proofs. On many occasions we believed that
we had overcome one last hurdle, only to be stymied
by yet another. However the struggle has also paid
handsome dividends. For example, our SODA paper
two years ago [16] was obtained as part of the program
to achieve this dichotomy. We realized we needed a
dichotomy for unsymmetric functions over the Boolean
domain, and indeed that is used to overcome a major
difficulty in the proof here.

2 Preliminary

Holant problems are designed to capture a broad class
of locally constrained counting type problems. Let D be
a finite domain set, and F be a finite set of constraint
functions called signatures. Each f ∈ F is a mapping
from Dk → C for some arity k. We assume signatures
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take complex algebraic numbers.
A signature grid Ω = (G,F , π) consists of a graph

G = (V,E) where each vertex v ∈ V is labeled by a
function fv ∈ F , and π is the labeling. The Holant
problem on instance Ω is to evaluate

HolantΩ =
∑
σ

∏
v∈V

fv(σ |E(v)),

a sum over all edge assignments σ : E → D, where E(v)
denotes the incident edges at v.

A function fv is listed by its values lexicographically
as a truth table, or as a tensor in (C|D|)⊗ deg(v). We can
identify a unary function f(x) : D → C with a vector
u ∈ C|D|. Given two vectors u and v of dimension |D|,
the tensor product u⊗v is a vector in C|D|2 , with entries
uivj (1 ≤ i, j ≤ |D|). Similarly for matrices A and B,
A ⊗ B has entries ai,jbk,l indexed by ((i, k), (j, l)). We
write u⊗k for u ⊗ . . . ⊗ u with k copies of u. A⊗k is
similarly defined. We have A⊗ku⊗k = (Au)⊗k, and
A⊗kB⊗k = (AB)⊗k.

A signature f of arity k is degenerate if f =
u1 ⊗ u2 ⊗ . . . ⊗ uk for some vectors ui. Equivalently
there are unary functions fi such that f(x1, . . . , xk) =
f1(x1) · · · fk(xk). Such a signature is very weak; there is
no interaction between the variables. If every function
in F is degenerate, then HolantΩ for any Ω = (G,F , π)
is computable in polynomial time in a trivial way: Sim-
ply split every vertex v into deg(v) many vertices each
assigned a unary fi and connected to the incident edge.
Then HolantΩ becomes a product over each component
of a single edge. Thus degenerate signatures are weak
and should be properly understood as made up by unary
signatures. To concentrate on the essential features that
divide tractability from intractability, we introduced
Holant∗ problems. These are Holant problems where
unary signatures are assumed to be present [14, 15].

Definition 2.1. Given a set of signatures F ,
Holant(F) is the class of all Holant problems us-
ing (any finite subset of) F , and Holant∗(F) denotes
Holant(F ∪ U), where U is the set of all unary
signatures.

A signature f on k variables is symmetric if
f(x1, . . . , xk) = f(xσ(1), . . . , xσ(k)) for all σ ∈ Sk, the
symmetric group. It can be shown easily that a sym-
metric signature f is degenerate iff f = u⊗k for some
unary u.

A symmetric signature has a clear combinatorial
meaning. A symmetric signature f on k Boolean
variables can be expressed as [f0, f1, . . . , fk], where fj
is the value of f on inputs of Hamming weight j.

Theorem 2.1. (Theorem 3.1 in [14]) Let F be any
set of non-degenerate, symmetric, complex-valued sig-
natures in Boolean variables. If F is of one of the fol-
lowing types, then Holant∗(F) is in P, otherwise it is
#P-hard.

1. Any signature in F is of arity at most 2;

2. There exist two constants a and b (not both zero,
depending only on F), such that for all signatures
[f0, f1, . . . , fn] in F one of the two conditions is
satisfied: (1) for every k = 0, 1, . . . , n− 2, we have
afk+bfk+1−afk+2 = 0; (2) n = 2 and the signature
[f0, f1, f2] is of the form [2aλ, bλ,−2aλ].

3. For every signature [f0, f1, . . . , fn] ∈ F one of
the two conditions is satisfied: (1) For every k =
0, 1, . . . , n − 2, we have fk + fk+2 = 0; (2) n = 2
and the signature [f0, f1, f2] is of the form [λ, 0, λ].

There are alternative forms of this dichotomy the-
orem for Holant∗ problems over the Boolean domain.
When there is a single ternary symmetric function f ,
the Holant problem Holant∗({f}) is tractable in the fol-
lowing cases, and is #P-hard otherwise (see [15, 16]).

1. f = H⊗3[a, 0, 0, b]T, where H is a 2× 2 orthogonal
matrix, ab 6= 0.

2. f = Z⊗3[a, 0, 0, b]T, where Z = 1√
2

[
1 1
i −i

]
, ab 6=

0.

3. f = Z⊗3[a, b, 0, 0]T, where Z = 1√
2

[
1 1
i −i

]
or

Z = 1√
2

[
1 1
−i i

]
, b 6= 0.

4. f is degenerate.

To introduce the idea of holographic reductions, it
is convenient to consider bipartite graphs. For a general
graph, we can always transform it into a bipartite graph
preserving the Holant value, as follows: For each edge
in the graph, we replace it by a path of length 2, and
assign to the new vertex the binary Equality function
(=2).

We use Holant(R | G) to denote the Holant problem
on bipartite graphs H = (U, V,E), where each signature
for a vertex in U or V is from R or G, respectively.
An input instance for the bipartite Holant problem is a
bipartite signature grid and is denoted as Ω = (H; R |
G; π). Signatures in R are considered as row vectors
(or covariant tensors); signatures in G are considered as
column vectors (or contravariant tensors) [19].

For a |D| × |D| matrix T and a signature set F ,
define TF = {g | ∃f ∈ F of arity n, g = T⊗nf}, simi-
larly for FT . Whenever we write T⊗nf or TF , we view
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the signatures as column vectors; similarly for fT⊗n

or FT as row vectors. A holographic transformation
by T is the following operation: given a signature grid
Ω = (H; R | G; π), for the same graph H, we get a
new grid Ω′ = (H; RT | T−1G; π′) by replacing each
signature in R or G with the corresponding signature in
RT or T−1G.

Theorem 2.2. (Valiant’s Holant Theorem [44])
If there is a holographic transformation mapping signa-
ture grid Ω to Ω′, then HolantΩ = HolantΩ′ .

Therefore, an invertible holographic transformation
does not change the complexity of the Holant prob-
lem in the bipartite setting. We illustrate the pow-
er of holographic transformation by an example. Let
f = [ 3

2 , 0,
1
2 , 0,

3
2 ]. Consider Holant(f) on the Boolean

domain. For a 4-regular graph G, Holant(f) is a sum
over all 0-1 edge assignments of products of local eval-
uations. Each vertex contributes a factor 3

2 if all in-
cident edges are assigned the same truth value, a fac-
tor 1

2 if exactly half are assigned 1 and the other half
0. Before anyone consigns this problem to be artificial
and unnatural, consider a holographic transformation

by Z = 1√
2

[
1 1
i −i

]
. Then Holant(f) = Holant(=2| f) =

Holant((=2)Z⊗2 | (Z−1)⊗4f). Let f̂ = [0, 0, 1, 0, 0], and
writing it as a symmetrized sum of tensor products, then

Z⊗4f̂

=Z⊗4

{[
1
0

]
⊗
[
1
0

]
⊗
[
0
1

]
⊗
[
0
1

]
+

[
1
0

]
⊗
[
0
1

]
⊗
[
1
0

]
⊗
[
0
1

]
+ · · ·+

[
0
1

]
⊗
[
0
1

]
⊗
[
1
0

]
⊗
[
1
0

]}
= 1

4

{[
1
i

]
⊗
[
1
i

]
⊗
[

1
−i

]
⊗
[

1
−i

]
+

[
1
i

]
⊗
[

1
−i

]
⊗
[
1
i

]
⊗
[

1
−i

]
+ · · ·+

[
1
−i

]
⊗
[

1
−i

]
⊗
[
1
i

]
⊗
[
1
i

]}
= 1

2 [3, 0, 1, 0, 3] = f ;

Hence the contravariant transformation (Z−1)⊗4f = f̂ .
Meanwhile, a covariant transformation by Z transforms
(=2) to the binary Disequality function ( 6=2)

(=2)Z⊗2 =
(
1 0 0 1

)
Z⊗2

=
{(

1 0
)⊗2

+
(
0 1

)⊗2
}
Z⊗2

= 1
2

{(
1 1

)⊗2
+
(
i −i

)⊗2
}

= [0, 1, 0] = ( 6=2).

So Holant(f) = Holant((6=2) | [0, 0, 1, 0, 0]); they are
really one and the same problem. A moment’s reflec-
tion shows that this latter formulation is counting the

number of Eulerian orientations on 4-regular graphs, an
eminently natural problem!

Furthermore, holographic transformation by an or-
thogonal matrix T preserves the binary equality and
thus can be used freely in the standard setting.

Theorem 2.3. Suppose T is an orthogonal matrix
(TT T = I) and let Ω = (G,F , π) be a signature grid.
Under a holographic transformation by T , we get a new
grid Ω′ = (G,TF , π′) and HolantΩ = HolantΩ′ .

Let F be a symmetric signatures of arity 3 over
domain {B,G,R}. We use the following notation.

F = [FBBB ;FBBG, FBBR;FBGG, FBGR, FBRR;

FGGG, FGGR, FGRR, FRRR].

Alternatively we also use the following notation:
(2.1)

FBBB
FBBG FBBR

FBGG FBGR FBRR
FGGG FGGR FGRR FRRR

For a signature F of arity two, we also use a
symmetric 3 × 3 matrix to represent it, M = MF =[
FBB FBG FBR
FBG FGG FGR
FBR FGR FRR

]
. The rank of a binary signature is

the rank of its 3 × 3 matrix. Also the matrix form of
T⊗2F is TMT T. The matrix form of (=2) is the identity
matrix I. Thus for an orthogonal T , and F of arity
r, Holant(F) = Holant(=2| F) = Holant((=2)(T T)⊗2 |
T⊗rF) = Holant(TF).

A unary function can be represented as [FB ;FG, FR]
in symmetric notation, or (FB , FG, FR) as a vector. For
a function of arity r, We use Fi=A, where i ∈ [r] and
A ∈ {B,G,R}, to denote a signature of arity r − 1 by
fixing the i-th input of F to A. For example for the
ternary function F in (2.1),

(2.2) F1=B =

[
FBBB FBBG FBBR
FBBG FBGG FBGR
FBBR FBGR FBRR

]
.

Sometimes, we also restrict the i-th input of F to a
subset S of {B,G,R}, and we use Fi→S (for exam-
ple F2→{B,R}) to denote it. We use F∗→S to de-
note the case when we restrict all inputs of F to S.
For example F∗→{G,R} = [FGGG, FGGR, FGRR, FRRR].
The above notation can be combined, for example
F1=B;2,3→{G,R} = [FBGG, FBGR, FBRR]. We also use
Fa,b,c, (a, b, c ∈ N, a + b + c = r) to denote the val-
ue of F when the numbers of B’s, G’s and R’s among
the inputs are respectively a, b and c. For example,
F1,2,0 = FBGG.
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We use Sym(F) to denote the symmetrization
of F as follows: For i1, i2, . . . , ir ∈ {B,G,R},
(Sym(F))(i1i2...ir) =

∑
σ∈Sr Fiσ1iσ2...iσr , where the sum-

mation is over the symmetric group Sr.
1

Let F be a ternary symmetric signature, and let
u = (α, β, γ) be a unary signature, both on domain
{B,G,R}, we can form a binary symmetric signature by
connecting one input of F with u. Since F is symmetric,
connecting to any one of the input wires defines the
same symmetric signature on the other input wires.
We denote this signature by 〈u,F〉. This (contraction)
operation can be performed on any signature F of arity
at least 1. For F of arity at least 2, 〈v, 〈u,F〉〉 =
〈u, 〈v,F〉〉. For two unary functions u and v, 〈u,v〉
is simply the dot product value. A vector v is isotropic
if 〈v,v〉 = 0. For example v = (1, i). Any non-
zero isotropic vector of length 3 can be transformed to
(1, i, 0) by an orthogonal transformation.

3 Statement of the Dichotomy Theorem

Theorem 3.1. Let F be a symmetric ternary function
over domain {B,G,R}. Then Holant∗(F) is #P-hard
unless F is of one of the following forms, in which case
the problem is in polynomial time.

1. There exist three vectors α, β, and γ of dimension
3 such that they are mutually orthogonal to each
other, i.e. 〈α, β〉 = 0, 〈α, γ〉 = 0 and 〈β, γ〉 = 0,
and F = α⊗3 + β⊗3 + γ⊗3;

2. There exist three vectors α, β1, and β2 of dimen-
sion 3 such that 〈α, β1〉 = 0, 〈α, β2〉 = 0,
〈β1, β1〉 = 0, 〈β2, β2〉 = 0 and F = α⊗3 +β1

⊗3 +
β2
⊗3;

3. There exist two vectors β and γ of dimension 3
and a function Fβ of arity three, such that β 6= 0,
〈β, β〉 = 0, 〈Fβ ,β〉 = 0 and F = Fβ + β⊗2 ⊗ γ +
β ⊗ γ ⊗ β + γ ⊗ β⊗2.

Remarks: (I) In the forms above, the vectors
α, β, γ, β1, β2 can be the zero vector (except β in 3.)
(II) In form 3, F is the sum of Fβ with (1/2 of) the
symmetrization of β⊗2 ⊗ γ. The constant factor 1/2
doesn’t matter, and can be absorbed in γ.
(III) Let T be an orthogonal 3× 3 matrix, then F is of
one of the three forms above iff T⊗3F is.

Theorem 3.1 gives a complete list of tractable
cases for Holant∗(F). We now give various canonical
forms of these tractable cases, under an orthogonal
transformation T .

1Usually, there is a normalization factor 1
r!

in front of the sum-

mation, however a global factor does not change the complexity
and we ignore this factor for notational simplicity.

Theorem 3.2. Let F be a symmetric ternary function
over domain {B,G,R}. Then Holant∗(F) is #P-hard
unless there is an orthogonal transformation T , such
that the function T⊗3F is of one of the following forms,
in which case the problem is in P.

1. For some a, b, c ∈ C, T⊗3F = ae1
⊗3 + be2

⊗3 +
ce3
⊗3.

2. For some c 6= 0 and λ ∈ C, cT⊗3F = β0
⊗3 +

β0
⊗3

+ λe3
⊗3, where β0 = 1√

2
(1, i, 0)T, and β0 is

its conjugate 1√
2
(1,−i, 0)T.

3. For ε ∈ {0, 1}, T⊗3F = F0 + εSym(β0 ⊗ β0 ⊗
β0), where F0 satisfies the annihilation condition
〈F0,β0〉 = 0.

4 Tractability

Suppose F = [3; 1, 1; 5, 1, 3; 7, 5, 1, 1]. Is Holant∗(F)
computable in polynomial time? It turns out
that there are three pairwise orthogonal vectors
(1,−1, 1)T, (1, 0,−1)T and (1, 2, 1)T such that F =[

1
−1
1

]⊗3

+

[
1
0
−1

]⊗3

+

[
1
2
1

]⊗3

. By Theorem 3.1, Holant∗(F)

is tractable. If we take T = 1√
6

[ √
2

√
3 1

−
√

2 0 2√
2 −

√
3 1

]
, then T

is orthogonal, and F = T⊗3F′, where F′ =
√

27e1
⊗3 +√

8e2
⊗3 +

√
216e3

⊗3. Hence we can perform an orthog-
onal transformation by T , then the problem Holant∗(F)
is transformed to Holant∗(F′). For F′ the polynomial
time algorithm on any input G is simple: In each con-
nected component of G, any color from {B,G,R} at a
vertex v uniquely determines the same color at all its
neighbors, and the vertex contributes a factor

√
27 or√

8 or
√

216 respectively. These values are multiplied
over the connected component. Thus, if G has con-
nected components C1, C2, . . . , Ck, and Cj has nj ver-

tices, then the Holant values is
∏

1≤j≤k(
√

27
nj

+
√

8
nj

+√
216

nj
).

We believe for countless such questions, not only
the problem is very natural, but also the answer is not
obvious without the underlying theory. Note that even
though the function F above takes only positive values,
the vectors can have negative entries. Armed with the
dichotomy theorem, any interested reader can find many
more examples.

In this section we prove that Holant∗(F) is com-
putable in polynomial time, for any symmetric ternary
function F given in the three forms of Theorem 3.1, or
equivalently Theorem 3.2.

For any 3 × 3 orthogonal matrix T , it keeps the
binary equality (=2) over {B,G,R} unchanged, namely
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T TI3T = I3 in matrix notation. Hence Holant∗(F) is
tractable iff Holant∗(T⊗3F) is tractable.

The above argument proves that Holant∗(F) is
computable in polynomial time if F has form 1.

ae1
⊗3 + be2

⊗3 + ce3
⊗3.

In form 2., let F be

β0
⊗3 + β0

⊗3
+ λe3

⊗3.

Under the matrix M =
[
Z−1 0

0 1

]
, where

Z = 1√
2

[
1 1
i −i

]
, Z−1 = 1√

2

[
1 −i
1 i

]
, the function F is

transformed to

M⊗3F = e1
⊗3 + e2

⊗3 + λe3
⊗3.

Meanwhile the covariant transformation on the binary
equality is (=2)(M−1)⊗2, which has the matrix form

(M−1)TIM−1 =
[
0 1 0
1 0 0
0 0 1

]
. This can be viewed as a

Disequality on {B,G} and Equality on {R}, with a
separated domain. Now it is clear that Holant∗(F)
is computable in polynomial time by a connectivity
argument. Within each connected component, any
assignment of R will be uniquely propagated as R; any
assignment of B or G will be exchanged to G or B along
every edge.

The proof of tractability for form 3. is more
involved. We refer to the more generic expression of
form 3. in Theorem 3.1. First, under an orthogonal

transformation we may assume β =
[
1 i 0

]T
. The

function F is expressed as a sum S+β⊗2⊗γ+β⊗γ⊗β+
γ ⊗ β⊗2, where 〈S,β〉 = 0. We denote by T0 = S, and
Tj for the remaining three terms respectively, 1 ≤ j ≤ 3.
The value Holant∗(F) is the sum over all {B,G,R} edge
assignments,

∑
σ

∏
v fv(σ |E(v)), where E(v) are the

edges incident to v, and all fv are the function F, or
some unary function.

Without loss of generality, we can assume the input
graph is connected. In the first step, we handle all
vertices of degree one. Such a vertex v is connected
to another vertex p of degree d. We can calculate a
function of arity d− 1 by combining the unary function
at v with the function at p. This is a symmetric function
and we can replace the vertex p together with v by a
vertex q of degree d−1 and given this function. If d = 1,
since the graph is connected, there is no vertex left and
we have computed the value of the problem. If d = 2,
the new function at q is a unary function. If d = 3, then
fp is F. We may repeat this process until all vertices are

of degree 2 or 3 and given either F or 〈u,F〉 =
∑3
j=0 T

′
j

for some unary u, where T ′j = 〈u, Tj〉.

For every vertex v of degree 2 or 3, we can express
the function fv as

∑3
j=0 T

′
j or

∑3
j=0 Tj with the incident

edges assigned as (ordered) input variables to each
T ′j or Tj . (Note that T ′j and Tj are in general not
symmetric, for 1 ≤ j ≤ 3.) Then Holant∗(F) =∑
σ

∏
v fv(σ |E(v)) =

∑
σ

∏
v

∑3
j=0 fv,j(σ |E(v)) =∑

τ

∑
σ

∏
v fv,τ(v)(σ |E(v)), where the first summation

is over all assignments τ from all vertices v ∈ V to some
j = τ(v) ∈ {0, 1, 2, 3} which also assigns a copy of T ′j or
Tj as fv,τ(v) at v.

We are given that 〈β, T0〉 = 0, then 〈β, T ′0〉 = 0
as well. Meanwhile T ′1 = c1β

⊗2, T ′2 = c2β ⊗ γ, and
T ′3 = c3γ ⊗ β, where the constants c1 = 〈u,γ〉, and
c2 = c3 = 〈u,β〉. Note that T ′j and Tj , for 1 ≤ j ≤ 3,
are all degenerate functions, and can be decomposed as
unary functions. We also note that they all have at least
as many copies of β as γ.

Fix any τ , let S (resp. T ) denote the set of vertices
which are assigned the function T0 or T ′0 (resp. Tj or
T ′j , with 1 ≤ j ≤ 3) by τ . Suppose neither S nor
T is empty. Then by connectedness, there are edges
between S and T . All functions in T are decomposed
into unary functions. There are at least as many copies
of β as γ. Some of these functions may be paired up
by edges inside T . If any two copies of β are paired
up, the product is zero. If every copy of β is paired
up with some γ within T , then at least one copy of β
is connected to some vertex in S. But every function
in S is annihilated by β. Hence the total contribution
for such τ to Holant∗(F) is zero when S are T both
non-empty.

Now consider
∑
σ

∏
v fv,τ(v)(σ |E(v)) for those τ

such that either S or T is empty. Suppose S = ∅.
Again we decompose every function in T into unary
functions. Then in order to be non-zero, the number
of β and γ must be exactly equal. Hence if there is
any vertex of degree 3, the contribution is 0. We only
need to consider a connected graph such that all vertices
have degree 2, which is a cycle. Because each β must be
paired up exactly with γ, we only need to calculate the
sum

∑
σ

∏
v fv,τ(v)(σ |E(v)) for two τ , which is tractable,

since the graph is just a cycle.
Finally suppose T = ∅. Then there is only one

assignment τ which assigns T0 and T ′0 to every vertex
of degree 3 and 2 respectively. Consider all edge
assignments σ. Suppose E = {e1, e2, . . . , em} is the
edge set, and e1 = (p, q). All assignments σ are
divided into 3 sets ΣB , ΣG or ΣR, according to the
value σ(e1) = B, G or R, respectively. There is a
natural one-to-one mapping φ from ΣB to ΣG, such
that (φ(σ))(ej) = σ(ej) for j = 2, . . . ,m. Let θ(σ)
denote

∏
v fv,τ(v)(σ |E(v)), where E(v) are the edges

incident to v. Notice that at all v 6= p, q, the value of
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fv,τ(v) is the same for σ and φ(σ), but at v = p, q,
fv,τ(v)(φ(σ) |E(v)) = ifv,τ(v)(σ |E(v)), which can be
directly verified using the condition 〈S,β〉 = 0. Hence
θ(φ(σ)) = −θ(σ). Therefore we only need to calculate
θ(σ) for σ in ΣR. We can use σ(e2) to divide ΣR into
3 sets, to repeat this process. At last, we only need to
calculate θ(σ) for the single σ mapping every edge to R.
This concludes the proof of tractability.

5 Outline for Hardness Proof

The starting point of our hardness proof is the di-
chotomy for Holant∗(F) problems on the Boolean do-
main. A natural hope is that Holant∗(F) is #P-hard
if the Boolean domain Holant∗ problem for the func-
tion F∗→{G,R}, which is the restriction of the function
F to the two-element subdomain {G,R}, is already #P-
hard. But this statement is false when stated in such
full generality, as we can easily construct an F such
that Holant∗(F) is tractable while Holant∗(F∗→{G,R})
is #P-hard (e.g., the first example in Section 4). Howev-
er, this would be true if we have another special binary

function (=G,R) =
[
0 0 0
0 1 0
0 0 1

]
. The reduction is straight-

forward: Given an instance G of Holant∗(F∗→{G,R}),
we construct an instance of Holant∗(F) by inserting a
vertex into each edge ofG and assigning the binary func-
tion =G,R to these vertices. The binary function =G,R

in each edge acts as an equality function in the Boolean
subdomain {G,R} while any assignment of B anywhere
produces a zero.

Therefore, our first main step is to construct the
function =G,R. If we can construct a non-degenerate

binary function with the form
[
0 0 0
0 ∗ ∗
0 ∗ ∗

]
, we can use

interpolation to interpolate =G,R by a chain of copies
of the above binary function. The remaining task is to
realize such a binary function.

However we find that it is difficult or impossible to
realize it directly by gadget construction in most cases.
Here we use the idea of holographic reduction. As shown
in the tractability part, holographic reduction plays an
essential role there in developing polynomial algorithms.
It also plays an important role in the hardness proof part
as a method to normalize functions. We can always
apply an orthogonal holographic transformation to a
signature function without changing its complexity as
shown in Theorem 2.3. If we can realize a binary
function with rank 2, which can be constructed directly
with the help of unary functions, then we can hope
to use a holographic reduction to transform the binary
function to the above form. This fits well with the idea
of holographic reduction. A binary function with rank
2 shows that there is a hidden structure with a domain
of size 2. The holographic reduction mixes the domain

elements in a suitable way so that this hidden Boolean
subdomain becomes explicit.

There are certain rank 2 matrices such as
[
0 0 1
0 0 i
1 i 0

]
,

for which an orthogonal holographic transformation
does not exist. The reason is that the eigenvector of this
matrix corresponding to the eigenvalue 0 is isotropic.
This is the first place where isotropic vectors present
some obstacle to our proof. There are several places
throughout the entire proof, where we have to deal with
isotropic vectors separately. There are two reasons:
(1) For an isotropic vector, we cannot normalize it
to a unit vector by an orthogonal transformation; (2)
There are indeed additional tractable functions which
are related to isotropic vectors. Consequently we have
to circumvent this obstacle presented by the isotropic
eigenvectors.

Additionally, there are some exceptional cases
where the above process cannot go through. For these
cases, we either prove the hardness result directly or
show that it belongs to one of the three forms in The-
orem 3.1. In the second main step, we assume that
we are already given =G,R and we further prove that
Holant∗(F) is #P-hard if F is not of one of the three
forms in Theorem 3.1.

Given =G,R, Holant∗(F) is #P-hard if
Holant∗(F∗→{G,R}) is #P-hard, which we use our
previous dichotomy for Boolean Holant∗ to determine.
Hence we may assume that F∗→{G,R} takes a tractable
form. At this point, we employ holographic reduction
to normalize our function further. But we should be
careful here since we do not want the transformation
to destroy =G,R. We introduce the idea of a domain
separated holographic reduction. A basis for a domain
separated holographic transformation is of the form[
∗ 0 0
0 ∗ ∗
0 ∗ ∗

]
, which mixes up the subdomain {G,R} while

keeping B separate. In particular, such orthogonal
holographic transformations preserve =G,R.

For example, when F∗→{G,R} is a(x, y)⊗2 +
b(z, w)⊗2 = [ax2 + by2, axy + bzw, ay2 + bw2], where(
x y
z w

)
is an orthogonal matrix (this corresponds

to a tractable case in form 2 of Theorem 2.1), we can
apply an orthogonal holographic transformation of the

basis

 1 0 0
0 x y
0 z w

 so that F is transformed to H =

HBBB
HBBG HBBR

HBGG HBGR HBRR
a 0 0 b

.

According to the Holant∗ dichotomy on domain size
2, when putting this H∗→{G,R} = [a, 0, 0, b] and a
binary function together, the problem is #P-hard unless
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the binary function is of the form [∗, 0, ∗], [0, ∗, 0], or
degenerate. We shall prove that we can always construct
a binary function which is not of these forms unless the
function F has an uncanny regularity such that it is one
of the forms in Theorem 3.1.

One idea greatly simplifies our argument in this
part. By gadget construction, we can realize some
binary functions with some parameters, which we can
set freely to any complex number. Then we want to
prove that we can set these parameters suitably so
that the signature escapes from all the known tractable
forms. This is quite difficult since different values may
make the signature belong to different tractable forms.
A nice observation here is that the condition that a
binary signature belongs to a particular form say [∗, 0, ∗]
can be described by the zero set of a polynomial. Thus
these values form an algebraic set. To escape from a
finite union of such sets, it is sufficient to prove that
for every form, we can set these parameters to escape
from this particular form. We call this the polynomial
argument.

The spirit of the proof for all the other tractable
non-degenerate ternary forms for F∗→{G,R} is similar
although the details are very different. In particular,
we need to employ a non-orthogonal holographic trans-

formation
[

1 0
0 Z

]
where Z = 1√

2

[
1 1
i −i

]
. This trans-

formation does not preserve =G,R, rather it transforms

=G,R to ( 6=G,R) =
[
0 0 0
0 0 1
0 1 0

]
.

When the ternary signature F∗→{G,R} is degener-
ate, the proof structure is quite different. The rea-
son is that any set of binary functions are tractable
in the Holant framework. So we have to construct a
non-degenerate signature with arity at least three. It is
quite difficult to construct a totally symmetric function
with high arity except with some simple gadgets such
as a star or a triangle. These gadgets work for some
signatures but fail for others. Due to this difficulty, we
employ unsymmetric gadgets too. Fortunately, we also
have a dichotomy for unsymmetric Holant∗ problems in
the Boolean domain [16]. Since the dichotomy for this
more general Boolean Holant∗ is more complicated, we
use a different proof strategy here. We only show the
existence of a non-degenerate signature with arity at
least three, but do not analyze all possible forms case-
by-case. We instead prove that we can always construct
some binary signature in addition to the higher arity
one, which makes the problem hard no matter what the
high arity signature is, provided that F is not one of the
tractable cases.

Finally, for a particular family of signatures which
can be normalized to the following form:

0
ix x

0 0 0
1 i −1 −i.

where two isotropic vectors (1, i) and (1,−i) interact in
an unfavorable way, we have to use a different argument.
Due to its special structure, we have to use a different
hard problem to reduce from, namely the problem of
counting perfect matchings on 3-regular graphs. The
problem is also used when F∗→{G,R} = [0, 0, 0, 0] is
identically 0. This problem is #P-hard (although
tractable over planar graphs. This also indicates that
the holographic reduction theory developed here is
distinct from the theory of matchgate based holographic
algorithms [44, 43].)

6 Realize the Binary Function =G,R

Recall that (=G,R) =

0 0 0
0 1 0
0 0 1

, and the first step

of our hardness proof is to realize it, which is stated
formally by the following theorem.

Theorem 6.1. Let F be a symmetric ternary function
over domain {B,G,R}. Then one of the following is
true:

1. F is of one of the forms in Theorem 3.1, and
Holant∗(F) is in P;

2. Holant∗(F) is #P-hard;

3. There exists an orthogonal 3×3 matrix T such that
Holant∗(F) is polynomial time equivalent to
Holant∗({T⊗3F,=G,R}).

This theorem is proved in 3 steps by the following
3 lemmas.

Lemma 6.1. If F does not take one of the three forms in
Theorem 3.1, then we can either prove that Holant∗(F)
is #P-hard or construct a binary symmetric function f
from F by connecting a unary function to it, such that
(the matrix form of) f has rank 2.

Proof. By connecting F to a unary u = (x, y, z), we
can realize xF1=B + yF1=G + zF1=R. For notational
simplicity, we denote the 3 × 3 matrices X = F1=B ,
Y = F1=G and Z = F1=R. First suppose there exists
a non-zero unary u such that xX + yY + zZ = 0. If
u is isotropic, then F is in the third form of Theorem
3.1. Suppose u is not isotropic, we may assume uTu =
1. Then we can apply an orthogonal transformation
by a matrix whose first vector is u, to reduce the
problem to an equivalent problem in domain size 2. The
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dichotomy theorem for Holant∗ problems over domain
size 2 completes the proof. The conclusion is that if F is
not of the three forms, then Holant∗(F) is #P-hard. In
the following, we assume that X, Y and Z are linearly
independent as complex matrices.

Now we prove the lemma by analyzing the ranks of
X,Y, Z. By linear independence, X,Y, Z all have rank
at least one.

• If at least one of X,Y, Z has rank 2, then we are
done by choosing the corresponding coefficient to
be 1 and the other two to be 0.

• If there are at least two of them (we assume they
are X and Y ) have rank 1, we shall prove that
X + Y has rank exactly 2. Firstly, the rank of
X + Y is at most 2 since both X and Y have rank
1. For symmetric matrices of rank 1, we can write
X = uuT and Y = vvT. We know that u and v are
linearly independent, since X and Y are linearly
independent. If X + Y has rank at most 1, then
there exists some w such that uuT + vvT = wwT.
There exists a vector u′ which is orthogonal to u
but not to v. This can be seen by considering the
dimensions of the null spaces of u and v. Then
〈u′, v〉v = 〈u′, w〉w. This implies that v is a linear
multiple of w since 〈u′, v〉 6= 0. Similarly, u is also
a linear multiple of w. This contradicts the linear
independence of u and v.

• In the remaining case, there are at least two of them
(we assume they are X and Y ) have rank 3. Then
det(xX +Z) = 0 is not a trivial equation since the
coefficient of x3 is det(X) 6= 0. Let x0 be a root for
the equation. Then the rank of x0X+Z is less than
3. If the rank is 2, then we are done. Otherwise, the
rank is exactly 1; it cannot be zero since Z is not
a linear multiple of X. Similarly, there exists a y0

such that the rank of the non-zero matrix y0Y +Z
is less than 3. Again, if the rank is 2, then we
are done. Now we assume that both x0X + Z and
y0Y +Z have rank 1. If x0X +Z and y0Y +Z are
linearly independent, then x0X+y0Y +2Z has rank
exactly 2, by the proof above, and we are done.
If x0X + Z and y0Y + Z are linearly dependent,
then a non-trivial combination is the zero matrix
λ(x0X+Z) +µ(y0Y +Z) = 0. Since they are both
nonzero matrices, both λ, µ 6= 0. Since X,Y, Z are
linearly independent, we must have x0 = y0 = 0,
and Z has rank 1. In this case, we consider zX+Y .
Again we have some z0 such that z0X+Y has rank
at most 2. If it is 2, we are done. It can’t be 0,
as X,Y are linearly independent. So z0X + Y has
rank exactly 1. Then z0X+Y +Z has rank exactly
2.

Lemma 6.2. If we can realize a rank 2 binary sym-
metric function A in Holant∗(F), then we can either
prove that F takes one of the forms in Theorem 3.1 and
Holant∗(F) is in P, or realize a rank 2 binary symmetric
function whose eigenvector corresponding to the eigen-
value 0 is not isotropic.

Proof. We only need to handle the case that the con-
structed rank 2 matrix A (binary function) has an
isotropic eigenvector corresponding to 0.

Suppose A is the 3 × 3 matrix representing the
binary function 〈u,F〉 for some unary function u. By
the canonical form in [41], there exists an orthogonal
matrix T , such that

TAT T =

0 0 1
0 0 i
1 i 0

 .
We may consider T⊗3F instead of F. Because

TAT T is the matrix form for 〈Tu, T⊗3F〉, to reuse the
notation, we can assume there exists a u, such that

〈u,F〉 has the matrix form

0 0 1
0 0 i
1 i 0

. We will rename

this matrix A.
Given any unary function v and a complex number

x, we can realize the binary function 〈xu + v,F〉 which

has the matrix form C = xA+ Ã, where Ã is the matrix
form of 〈v,F〉. If there exist some unary function v and
a complex number x, such that C is nonsingular, and

γ = C−1

1
i
0

 is not isotropic, then we can realize the

binary symmetric function CAC of rank 2 as a chain
of three binary symmetric functions, whose eigenvector
corresponding to 0 is γ, and the conclusion holds.

Now, we prove that if there does not exist such v
and x, then either Holant∗(F) is in P, or we can realize a
required binary function directly. We calculate the two

conditions, C is singular and γ = C−1

1
i
0

 is isotropic,

individually.

Suppose Ã =

a b c
b d e
c e f

. Then C = xA + Ã = a b c+ x
b d e+ xi

c+ x e+ xi f

. Let P (x) = det(C). As a

polynomial in x, P (x) has degree at most 2, and the
coefficient of x2 is a + 2bi − d. If a + 2bi − d 6= 0,
then for all complex x except at most two values, C is
nonsingular.
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Because Cγ = (1, i, 0)T, γ is orthogonal to
µ = (c + x, e + xi, f) and ν = (b − ai, d − bi, e − ci).
Consider the cross-product vector θ =(∣∣∣∣e+ xi f
d− bi e− ci

∣∣∣∣ , ∣∣∣∣ f c+ x
e− ci b− ai

∣∣∣∣ , ∣∣∣∣ c+ x e+ xi
b− ai d− bi

∣∣∣∣)T

,

which is orthogonal to µ and ν. Calculation shows that
the inner product θTθ is a polynomial Q(x) of degree
at most 2, and the coefficient of x2 is (a+ 2bi− d)2.

Assume a + 2bi − d 6= 0. Then, neither P (x) nor
Q(x) is the zero polynomial. There exists an x such that
C is nonsingular, which implies γ 6= 0 in particular, and
θTθ 6= 0. If µ and ν were linearly dependent, then θ = 0
by the definition of θ, and θTθ = 0, a contradiction.
Hence, µ and ν are linearly independent. So γ is a
nonzero linear multiple of θ, since they both belong
to the 1-dimensional subspace orthogonal to µ and ν.
Then γTγ is a nonzero multiple of θTθ 6= 0, i.e., γ is not
isotropic. Then CAC is the required function.

Now we assume that for any v, Ã = 〈v,F〉 satisfies
a+ 2bi− d = 0.

Substitute d by a+2bi, we get P (x) = 2(b−ai)(e−
ci)x − a(e − ci)2 − f(b − ai)2 + 2c(b − ai)(e − ci), and
the coefficient of x in Q(x) is 2i(e− ci)3.

For any fixed Ã, either e− ci = 0, or e− ci 6= 0. If
e−ci 6= 0, Q(x) is not the zero polynomial. If P (x) is not
the zero polynomial as well, then by the same argument
as above, we get a required function. Hence we assume
P (x) is the zero polynomial. Then by the expression for
P (x), it follows that b− ai = 0, and a = 0. Because we
also have a+ 2bi− d = 0, we get a = b = d = 0.

In this case Ã has the form Ã =

0 0 c
0 0 e
c e f

. It has

rank ≤ 2. If it has rank ≤ 1, then c = e = 0. This is a
contradiction to e − ci 6= 0. Hence it has rank 2. It is
easy to check that the eigenvector corresponding to the
eigenvalue 0 is a multiple of (−e, c, 0)T. If c2 + e2 6= 0,
then this eigenvector is non-isotropic and we are done.
Since e − ci 6= 0, the only possibility of c2 + e2 = 0
is e = −ci 6= 0. In this case it is easy to check that

cA+ Ã has the form

 0 0 2c
0 0 0
2c 0 f

. It has rank 2, and a

non-isotropic eigenvector (0, 1, 0)T corresponding to the
eigenvalue 0.

Finally we have for any Ã, e − ci = 0, in addition
to d = a+ 2bi.

Consider the possible choices of v in Ã = 〈v,F〉.
We can set it to be F1=B , F1=G or F1=R. Considering
what entries a, b, c, d, e correspond to in the table (2.1)

for these three cases of Ã, we get the following: If w 6= 0,
then Fu,v,w = iFu+1,v−1,w for v ≥ 1 and u+ v+w = 3.
If w = 0, then Fu,v,w = Fu,v,0 = siv + tviv−1 for some

coefficients s and t, where u, v ≥ 0 and u+ v = 3. This
follows from e = ci and d = a + 2bi for Ã. E.g., e = ci
in (2.2) gives a linear recurrence FBGR = iFBBR, and
d = a + 2bi in (2.2) gives a linear recurrence FBGG =
2iFBBG + FBBB . Hence, F = S + T is the summation
of two functions S and T , where Su,v,w = iSu+1,v−1,w,
and T (u, v, w) = 0, if w 6= 0, and T (u, v, 0) = tviv−1,
where u + v + w = 3. This T can be expressed as the
symmetrization of simple tensor products,

T = T1 + T2 + T3

= t

0
1
0

⊗
1
i
0

⊗
1
i
0

+ t

1
i
0

⊗
0

1
0

⊗
1
i
0


+t

1
i
0

⊗
1
i
0

⊗
0

1
0


=

t

2
Sym(

1
i
0

⊗
1
i
0

⊗
0

1
0

).

This is in form 3 given in Theorem 3.1 and we
have shown that in this case Holant∗(F) is tractable
in Section 4.

Finally we use a holographic transformation and
interpolation to get =G,R from the binary function
obtained in Lemma 6.2. This will complete the proof
of Theorem 6.1.

Let v be a non-isotropic eigenvector corresponding
to the eigenvalue 0 of the binary function A constructed
from F. We may assume 〈v,v〉 = 1. We can extend v to
an orthogonal matrix T , such that v is the first column
vector of T . Then the matrix form of the binary function
after the holographic transformation by T−1 = T T takes
the form

(6.3) T TAT =

0 0 0
0 a b
0 b c


with rank 2.

The next lemma shows that given this, we can
interpolate =G,R.

Lemma 6.3. Let H : {B,G,R}2 → C be a rank 2
binary function of the form (6.3). Then for any F
containing H, we have

Holant(F ∪ {=G,R}) ≤T Holant(F).

Proof. Consider the Jordan normal form of H. There
are two cases: there exist a non-singular M =

diag(1,M2), and either Λ =

[
0 0 0
0 λ 0
0 0 µ

]
, or Λ′ =
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[
0 0 0
0 λ 1
0 0 λ

]
, such that H = MΛM−1, or H =

MΛ′M−1.
For the first case H = MΛM−1, consider an

instance I of Holant(F∪{=G,R}). Suppose the function
=G,R appears m times. Replace each occurrence of
=G,R by a chain of M , =G,R, M−1. More precisely,
we replace any occurrence of =G,R (x, y) by

M(x, z) · (=G,R)(z, w) ·M−1(w, y),

where z, w are new variables. This defines a new in-
stance I ′. Since Mdiag(0, I2)M−1 = diag(0, I2), where
I2 denotes the 2×2 identity matrix, the Holant value of
the instance I and I ′ are the same. To have a non-zero
contribution to the Holant sum, the assignments given
to any occurrence of the new Equality constraints of
the form (=G,R)(z, w) must be (G,G) or (R,R). We
can stratify the Holant sum defining the value on I ′ ac-
cording to how many (G,G) and (R,R) assignments are
given to these occurrences of (=G,R)(z, w). Let ρj de-
note the sum, over all assignments with j many times
(G,G) and m− j many times (R,R), of the evaluation
on I ′, including those of M(x, z) and M−1(w, y). Then
the Holant value on the instance I ′ can be written as∑m
j=0 ρj .

Now we construct from I a sequence of in-
stances I ′k indexed by k: Replace each occur-
rence of (=G,R)(x, y) by a chain of k copies of
the function H to get an instance I ′k of Holant(F).
More precisely, each occurrence of (=G,R)(x, y) is
replaced by H(x, x1)H(x1, x2) . . . H(xk−1, y), where
x1, x2, . . . , xk−1 are new variables specific for this oc-
currence of (=G,R)(x, y). The function of this chain is
Hk = MΛkM−1. A moment of reflection shows that
the value of the instance I ′k is

m∑
j=0

ρjλ
kjµk(m−j) = µmk

m∑
j=0

ρj(λ/µ)kj .

If λ/µ is a root of unity, then take a k such that
(λ/µ)k = 1. (Input size is measured by the number
of variables and constraints. The functions in F are
considered constants. Thus this k is a constant.) We
have the value

∑m
j=0 ρjλ

kjµk(m−j) = µmk
∑m
j=0 ρj . As

H has rank 2, µ 6= 0, we can compute the value of I
from the value of I ′k.

If λ/µ is not a root of unity, (λ/µ)j are all distinct
for j ≥ 1. We can take k = 1, . . . ,m+1 and get a system
of linear equations about ρj . Because the coefficient
matrix is Vandermonde in (λ/µ)j , j = 0, 1, . . .m, we
can solve ρj and get the value of I.

For the second case H = MΛ′M−1, the construc-
tion is the same, so we only show the difference with

the proof in the first case. Again we can stratify
the Holant sum for I ′ according to how many differ-
ent types of assignments are given to the m occur-
rences of the new Equality constraints of the form
(=G,R)(z, w). Any assignment other than assigning on-
ly (G,G) or (R,R) will produce a 0 contribution for I ′.
However, this time we cluster all assignments accord-
ing to exactly j many times (G,G) or (R,R), and the
rest m − j are (G,R)’s, on all m occurrences of these
(=G,R)(z, w). Note that any assignment with a non-zero
number of (R,G)’s in the corresponding m signatures in
I ′k, after the substitution of each (=G,R)(x, y) in I by
H(x, x1)H(x1, x2) . . . H(xk−1, y), will produce a 0 con-
tribution in the Holant value for I ′k. This is because, by
this substitution, effectively each (=G,R)(z, w) in I ′ is

replaced by Λk =

[
0 0 0

0 λk kλk−1

0 0 λk

]
. Let ρj be the sum

over all assignments with j many (G,G) or (R,R), and
m− j many (G,R) of the evaluation (including those of
M(x, z) and M−1(w, y)) on I ′. Then the Holant value
on the instance I ′ (and on I) is just ρm.

The value of I ′k is

m∑
j=0

ρjλ
kj(kλk−1)m−j = λ(k−1)m

m∑
j=0

(λjρj)k
m−j .

We can take k = 1, . . . ,m + 1 and get a system of
linear equations on λjρj . Because the coefficient matrix
is a Vandermonde matrix, we can solve λjρj and (since
λ 6= 0 as H has rank 2) we can get the value of ρm,
which is the value of I.

7 Reductions From Domain Size 2

Theorem 7.1. Let F be a symmetric ternary function
over domain {B,G,R}, which is not of one of the forms
in Theorem 3.1. Then Holant∗({F,=G,R}) is #P-hard.

Theorem 6.1 and 7.1 imply our main Theorem 3.1.
Using =G,R we can realize signatures over domain

{G,R} from F such as F∗→{G,R}. If Holant∗(F∗→{G,R})
is already #P-hard as a problem over the domain {G,R}
of size 2, then Holant∗({F,=G,R}) is #P-hard and we
are done. Therefore, we only need to deal with the cases
when Holant∗(F∗→{G,R}) is tractable. They are listed
as follows (see [15, 16]).

1. F∗→{G,R} = H⊗3[a, 0, 0, b]T, where H is a 2 × 2
orthogonal matrix, ab 6= 0.

2. F∗→{G,R} = Z⊗3[a, 0, 0, b]T, where Z =

1√
2

[
1 1
i −i

]
, ab 6= 0.
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3. F∗→{G,R} = Z⊗3[a, b, 0, 0]T, where Z =

1√
2

[
1 1
i −i

]
or Z = 1√

2

[
1 1
−i i

]
, b 6= 0.

4. F∗→{G,R} is degenerate.

We will prove Theorem 7.1 by considering these four
cases one by one. The overall proof approach for the first
three cases is to construct a binary function over the
domain {G,R} such that, together with F∗→{G,R} it is
already #P-hard according to the dichotomy theorem
for Holant∗ over domain size 2, Theorem 2.1. For
some functions F, we fail to do this; and whenever this
happens, we show that F is indeed among the tractable
cases in Theorem 3.1.

Definition 7.1. A symmetric function F of arity r ≥
2 is said to have a domain separated form if its domain
is the union of two disjoint non-empty subsets, such that
the value F is 0 when not all input variables take values
from the same subset.

Because in all four listed cases F∗→{G,R} has a
good form, we can use domain separated holographic
reductions to simplify F∗→{G,R}. The following is an
observation about how a holographic transformation
affects a function, when its basis is a block diagonal
matrix.

Fact 7.1. Suppose T is in the domain separated form

separating {B} and {G,R}, T =

e 0 0
0 a b
0 c d

. Let

M =

(
a b
c d

)
. We have,

(T⊗3F)∗→{G,R} = M⊗3(F∗→{G,R}),

(T⊗3F)1=B,2,3→{G,R} = eM⊗2(F1=B,2,3→{G,R}),

(T⊗3F)1=B,2=B,3→{G,R} = e2M(F1=B,2=B,3→{G,R}).

Proof. We prove the second formula as an example.
Other formulae can be proved similarly.

(T⊗3F)1=B,2,3→{G,R} is the line
[(T⊗3F)BGG, (T

⊗3F)BGR, (T
⊗3F)BRR] in the tri-

angular table form of T⊗3F, and F1=B,2,3→{G,R} is the
corresponding line of F.

Because one input of T⊗3F is fixed to B, it is equiv-
alent to connecting one unary function (1, 0, 0) to T⊗3F.
By associativity this unary can be combined with a copy
of T in the gadget T⊗3F. This combination results in
a unary function 〈(1, 0, 0), T 〉 = (TB,B , 0, 0) = (e, 0, 0),
which is then connected to F. This creates a binary
function eF1=B . Now, we get (T⊗2(eF1=B))∗→{G,R}.
The two external edges of the gadget T⊗2(eF1=B) are

restricted to {G,R}. Because the domain of T is sep-
arated into {B} and {G,R}, they force the two in-
ternal edges to take values in {G,R}. Since all 4
edges take values in {G,R}, this turns T⊗2(eF1=B) into
eM⊗2F1=B,2,3→{G,R}.

In some subcases, we reach a ternary function with
a separated domain. The following lemma whose proof
is omitted, takes care of these subcases.

Lemma 7.1. If a ternary function F has a domain
separated form then Holant∗(F) is either #P-hard or
is in one of the tractable forms of Theorem 3.1, and
it is determined by the Holant∗ problem defined by the
restriction of F to the separated domain of size two.

Next we consider the first listed case for F∗→{G,R}.

Case 1: F∗→{G,R} = H⊗3[a, 0, 0, b]T, ab 6= 0.
By Fact 7.1, after a domain separated holographic

reduction under the orthogonal matrix

[
1 0
0 H

]
, we

can assume that F∗→{G,R} = [a, 0, 0, b], where we are
given ab 6= 0. We note that this transformation does
not change =G,R. According to Theorem 2.1, when
putting this [a, 0, 0, b] and a binary function together,
the problem is #P-hard unless the binary function is of
the form [∗, 0, ∗], [0, ∗, 0] or degenerate. Now F has the
form

FBBB
FBBG FBBR

FBGG FBGR FBRR
a 0 0 b

Suppose FBGR 6= 0. We can realized a binary
function [FBGG + at, FBGR, FBRR] over domain {G,R}
by connecting this ternary function to a unary function
(1, t, 0), namely 〈(1, t, 0),F〉, and then putting =G,R

on the other two dangling edges. Since a 6= 0 and
we can choose any t, we can make the first entry of
[FBGG + at, FBGR, FBRR] arbitrary and the function is
out of all three tractable binary forms. Therefore the
problem is #P-hard.

Now we can assume that FBGR = 0. To simplify
notations, we use variables to denote the function
entries as follows

(7.4)

g
y w

x 0 z
a 0 0 b

Then we use the gadget as depicted in Figure 1 to
construct another binary function. The signature of this
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Figure 1: A binary gadget.

binary function is

[f0, f1, f2] = [(αx+βa)2+(αy+βx)2, (αy+βx)(αw+γz),

(αz + γb)2 + (αw + γz)2].

If there exists some (α, β, γ) such that this [f0, f1, f2] is
not of the form [∗, 0, ∗], [0, ∗, 0], or degenerate, then the
problem is #P-hard and we are done.

All conditions are polynomials (1) f0 = f2 = 0, or
(2) f1 = 0, or (3) f2

1 = f0f2. By polynomial argument,
we only need to solve that cases that one of them is zero
polynomial.

If statement (1) f0 = f2 = 0 holds for all (α, β, γ),
we have

(x2 + y2)α2 + 2(ax+ xy)αβ + (a2 + x2)β2 =

(z2 + w2)α2 + 2(bz + zw)αγ + (b2 + z2)γ2 = 0,

as identically zero polynomials in (α, β, γ). Therefore
we have

x2 + y2 = ax+ xy = a2 + x2 = z2 + w2 =

bz + zw = b2 + z2 = 0.

Since a 6= 0, we have x 6= 0 from a2 + x2 = 0. Similarly,
we have z 6= 0. Then the conclusion is x = ε1a, y =
−a, z = ε2b, w = −b, where ε1, ε2 ∈ {i,−i}. Then we
rewrite our function as follows

g
−a −b

ε1a 0 ε2b
a 0 0 b

Next we use the gadget depicted in Figure 2 to
construct another binary function over domain {G,R},
whose signature is

[
ε1 1 0
ε2 0 1

]g + ε2b −a 0
−a ε1a 0
0 0 0

ε1 ε2
1 0
0 1

 =

[
−g − ε1a− ε2b ε1ε2(g + ε1a+ ε2b)

ε1ε2(g + ε1a+ ε2b) −g − ε2b

]
.

Figure 2: A binary gadget.

If g + ε1a + ε2b 6= 0, this symmetric binary signature
can not be of the form [∗, 0, ∗] or [0, ∗, 0], and it is not
degenerate as its determinant is nonzero. Therefore the
problem is #P-hard.

If g + ε1a + ε2b = 0, we show that this is indeed a
tractable case in Theorem 3.1. It is of the second form
in Theorem 3.1 where α = (0, 0, 0)T,β1 = 3

√
a(ε1, 1, 0)T

and β2 = 3
√
b(ε2, 0, 1)T.

If statement (2) f1 = 0 holds for all (α, β, γ), we
have x = y = 0 or z = w = 0. If x = y = 0, the ternary
function (7.4) is as follows

g
0 w

0 0 z
a 0 0 b

Then G is separated from B-R, and by Lemma 7.1, we
are done. The case z = w = 0 is similar.

If statement (3) f2
1 = f0f2 holds for all (α, β, γ), we

have

(7.5) (αx+ βa)2(αz + γb)2 + (αx+ βa)2(αw + γz)2+

(αy + βx)2(αz + γb)2 = 0.

Let α = a and β = −x, we have (ay−x2)2(az+γb)2 = 0
holds for all γ. Since b 6= 0, we can choose γ such that
az + γb 6= 0 and conclude that ay − x2 = 0. Similarly,
let α = b and γ = −z, we can get bw − z2 = 0. Then
let β = γ = 1 and α = 0 in (7.5), we have

a2b2 + a2z2 + b2x2 = 0.

Denote by p = x
a and q = z

b , we have p2 +q2 +1 = 0 and
the ternary signature in (7.4) has the following form

g
ap2 bq2

ap 0 bq
a 0 0 b

If p = 0 or q = 0, then the function is separable and we
are done by Lemma 7.1. In the following, we assume
that pq 6= 0.
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Figure 3: A binary gadget.

Then we use the gadget in Figure 3 to construct
another binary function over domain {G,R}, whose
signature is

[
p 1 0
q 0 1

]g − bq3 − ap3 + ap2t apt 0
apt at 0
0 0 0

p q
1 0
0 1

 =

[
p2δ + at(p2 + 1)2 pqδ + apqt(p2 + 1)
pqδ + apqt(p2 + 1) q2δ + ap2q2t

]
,

where δ = g − ap3 − bq3. We denote this symmetric
binary function as [g0, g1, g2].

If δ = 0, one can verify that this is indeed a tractable
case of Theorem 3.1. This is of the third form of
Theorem 3.1, where β = (1,−p,−q)T,γ = (0, 0, 0)T,
and Fβ is the given function F.

Now we assume that δ 6= 0. If there exists some
t such that this binary function is not of the form
[∗, 0, ∗], [0, ∗, 0], or degenerate, then the problem is
#P-hard and we are done. Otherwise, by the same
argument as above, at least one of the three statements
(i) g0 = g2 = 0, (ii) g1 = 0, or (iii) g2

1 = g0g2 holds
for all t. Choose t = 0, we have all three g0, g1, g2 6= 0.
Therefore, the only possibility is that g2

1 = g0g2 holds for
all t. However, this is also impossible which can be seen
by choosing t = 1

a . One can calculate the determinant

det

[
g0 g1

g1 g2

]
= δq2 6= 0. This completes the proof for

the case F∗={G,R} = H[a, 0, 0, b]T.
We omit the proof of the next two cases, (Case 2:

F∗→{G,R} = Z⊗3[a, 0, 0, b]T, and Case 3: F∗→{G,R} =
Z⊗3[a, b, 0, 0]T. See [17]) Case 4: F∗→{G,R} is degener-
ate, turns out to be very difficult and requires a different
proof technique. We will omit most of the proof of Case
4, except the first lemma of the second subcase in this
Case 4.

For Case 4, where F∗→{G,R} is degenerate, our
approach is more complicated. If we can construct a
gadget which realizes a symmetric function of arity 3
whose restriction to domain {G,R} is non-degenerate,
then we can go on with the proof to construct some
proper binary gadget where the idea is similar to
previous cases. We don’t need such a construction in the

first 3 cases, because F∗→{G,R} is already good enough
and F itself can take this task. Unfortunately, we did
not find such a gadget that can be proved to work.

We find some unsymmetric gadget of arity 4 as a
replacement. Then we have to utilize the complexity
dichotomy theorem in [16], which is a generalization
of Theorem 2.1 to function sets that are not necessary
symmetric.

The first tractable class from [16] is denoted by 〈T 〉.
T is the set of all functions of arity at most 2. We say
a function set F is closed under tensor product, if for
any A,B ∈ F , A ⊗ B ∈ F . The tensor closure 〈F〉 of
a set F is the minimum set containing F , closed under
tensor product.

Our unsymmetric gadget will be good enough, so
that its restriction to domain {G,R} is not in 〈T 〉.
Together with some proper binary gadget, we can get
the hardness from the general complexity dichotomy
theorem from [16].

Case 4: F∗→{G,R} is degenerate.
Suppose F∗→{G,R} = (a, b)⊗3. The first subcase is

that (a, b) is not isotropic, which we omit here. Consider
the second subcase that (a, b) is isotropic.

We only need to prove the case when F∗→{G,R}

is [1, i,−1,−i], because we can perform an orthogonal
domain separated holographic reduction. Let F =
[u; t, r; s, p, q; 1, i,−1,−i], namely

(7.6)

u
t r

s p q
1 i −1 −i

Suppose T = 〈(α, β, γ),F〉 = αA+βB+γC, where
A = F1=B , B = F1=G and C = F1=R. Construct

H(x1, x2, x3, x4) =

 ∑
y1, y2 ∈
{B,G,R}

F(x1, x2, y1)T(y1, y2)F(y2, x3, x4)


∗→{G,R}

.

This H has some good properties, which can be
utilized to prove that it is not in 〈T 〉.

Fact 7.2. Suppose F satisfies H(x1, x2, x3, x4) =
H(x2, x1, x3, x4) = H(x1, x2, x4, x3) =
H(x2, x1, x4, x3). If F ∈ 〈T 〉, then there are bi-
nary functions A,B, either H = A(x1, x2)B(x3, x4) or
H = A(x1, x3)B(x2, x4).

We omit the proof of this fact.
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Let S =


s 1 i
p i −1
p i −1
q −1 −i

, indexed by {G,R}2 ×

{B,G,R} in lexicographic order. Then the arity 4
function H has a matrix form H1 = STST, where the
rows are indexed by (x1, x2) ∈ {G,R}2 and the columns
are indexed by (x3, x4) ∈ {G,R}2. The other matrix
form of H is H2 indexed by (x1, x3) and (x2, x4). H
has a decomposed form K(x1, x2)L(x3, x4) (respectively
K(x1, x3)L(x2, x4)) iff H1 (resp. H2) has rank at most
one.

Let P =


s 1
p i
p i
q −1

 and Q =

(
1 0 0
0 1 i

)
.

Then, S = PQ. By associativity, we can multiply
QTQT first in H1 = PQTQTPT.

We have

QAQT =

(
u t+ ir

t+ ir s+ 2ip− q

)
,

QBQT =

(
t s+ ip

s+ ip 0

)
,

QCQT =

(
r p+ iq

p+ iq 0

)
,

and in symmetric signature notation QTQT is

[uα+tβ+rγ, (t+ir)α+(s+ip)β+(p+iq)γ, (s+2ip−q)α].

Lemma 7.2. If p 6= is or q 6= ip, then there exist some
α, β, γ, such that H 6∈ 〈T 〉.

Proof. The proofs under both conditions are the same.
W.l.o.g. we assume p 6= is. The proof is composed
of three steps. We will use different matrix or vector
representations of H.

In the first step, we use the matrix form H1 =
P(QTQT)PT of H, and show that for some α, β, γ, this
matrix has rank at least 2.

The submatrix

(
s 1
p i

)
of P has full rank. We

only need to show that

(
s 1
p i

)
(QTQT)

(
s 1
p i

)T

,

a 2 × 2 submatrix of H1, is of full rank. det(QTQT)
is a polynomial whose coefficient of β2 is the nonzero
number −(s + ip)2. For any fixed α and γ, there are 3
different values c1, c2, (c1 + c2)/2 (these may depend on
α, γ), such that when β takes any one of these values,
det(QTQT) 6= 0 and consequently H1 has rank at least
2.

We attack the rank of H2 twice in following steps.
Either we already get rank at least 2 in the second

step, or we get some conditions utilized in the third
step. In the second step, we consider the matrix form
H2 = Hx1x3, x2x4 . If at least one of the three matrices
H2 given by (α, c1, γ), (α, c2, γ) and (α, (c1 + c2)/2, γ)
has rank at least two, by Fact 7.2, H 6∈ 〈T 〉.

Now suppose all three matrices H2 given by
(α, c1, γ), (α, c2, γ) and (α, (c1 + c2)/2, γ) have rank at
most 1. By the conclusion det(QTQT) 6= 0 in the first
step, the three ranks are exactly 1.

Let the matrices H2 given by (α, c1, γ) and (α, c2, γ)
be uuT and vvT for some column vectors u and v.
Then the matrix H2 given by (α, (c1 + c2)/2, γ) is
(uuT + vvT)/2. If u and v are linearly independent,
then (uuT + vvT)/2 has rank 2. (It certainly has rank
at most two, as its image is contained in the span of
{u,v}. By linear independence, there are w satisfying
uTw = 0 but vTw 6= 0. Thus the image contains v, and
similarly it also contains u.) Hence u and v are linearly
dependent. It follows that the matrices uuT and vvT

are also linearly dependent. This is so when we write
these two matrices as vectors.

We use the vector form H3 of H to show the
consequence of this observation. This form helps to
explain getting rid of P and PT. Let Ã denote the
column vector form of QAQT, namely Ã = (u, t+ir, t+

ir, s+ 2ip− q)T. Similarly, let B̃ = (t, s+ ip, s+ ip, 0)T

and C̃ = (r, p + iq, p + iq, 0)T be the column vector
forms of QBQT and QCQT, respectively. Then H3 =
P⊗2(αÃ + βB̃ + γC̃), which lists all entries of H, and
therefore also all entries of H2, in some order. Notice

that the submatrix

(
s 1
p i

)⊗2

of P⊗2 is of full rank.

Let α = 1 and γ = 0, we get Ã + c1B̃ and Ã + c2B̃
are linearly dependent, where c1 6= c2. It follows that
Ã and B̃ are linearly dependent. Because the entry
s + ip in B̃ is nonzero, Ã is a multiple of B̃, and
s + 2ip − q = 0 as the corresponding entry in B̃ is 0.
This is just (s + ip) + i(p + iq) = 0. Hence we have
p+ iq = i(s+ ip) 6= 0.

In the third step, we fix α = 0, β = 1, γ = 0.
Obviously, H1 has rank at least 2, since det(QBQT) =
−(s + ip)2 6= 0. We consider H2. Since the matrix(
s 1
p i

)
has rank 2, and

(
t

s+ ip

)
is a nonzero

vector, we have either
(
s 1

)( t
s+ ip

)
6= 0 or(

p i
)( t

s+ ip

)
6= 0.

Suppose the first is not zero. Consider the
(GG,GR) × (GG,GR) submatrix of H2, whose row
index is by x1x3 and the column index is by
x2x4. They are precisely the entries in the first

1293 Copyright © SIAM.
Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d 

04
/2

5/
16

 to
 2

02
.1

20
.2

.3
0.

 R
ed

is
tr

ib
ut

io
n 

su
bj

ec
t t

o 
SI

A
M

 li
ce

ns
e 

or
 c

op
yr

ig
ht

; s
ee

 h
ttp

://
w

w
w

.s
ia

m
.o

rg
/jo

ur
na

ls
/o

js
a.

ph
p



row (GG,GG), (GG,GR), (GG,RG) and (GG,RR) of
H1. Recall that H1 = P(QTQT)PT = P(QBQT)PT,
after our choice α = 0, β = 1, γ = 0. The
first row of P is

(
s 1

)
. Let

(
a b

)
=(

s 1
)( t s+ ip

s+ ip 0

)
. Then the first row of H1

is (
s 1

)
QBQTPT =(

s 1
)( t s+ ip

s+ ip 0

)(
s p p q
1 i i −1

)
=
(
a b

)( s p p q
1 i i −1

)
.

Because s+ 2ip− q = 0, which we proved in the second

step, we have the linear dependence

(
s
1

)
+2i

(
p
i

)
−(

q
−1

)
= 0. Therefore the four entries in the first row

of H1 are (k, l, l, k+2il), where k = as+b and l = ap+bi.
If the submatrix of H2 indexed by (GG,GR)×(GG,GR)
is not of full rank, then l2 = k(k + 2il), which is
(l − ik)2 = 0. Hence l = ik. It follows that ap = ias.

Notice that a =
(
s 1

)( t
s+ ip

)
6= 0. We get

p = is, a contradiction.

If
(
p i

)( t
s+ ip

)
6= 0, the proof is similar.

Consider the (GG,GR)×(RG,RR) submatrix of H2 in-
dexed by x1x3 and x2x4. They are precisely the second
row entries (GR,GG), (GR,GR), (GR,RG), (GR,RR)
of H1. The rest of the proof of Lemma 7.2 is the same
as the previous case.

The full proof can be found in [17].
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