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Abstract

Holographic algorithms were introduced by Valiant as a new

methodology to derive polynomial time algorithms. Here in-

formation and computation are represented by exponential

sums using the so-called signatures. These signatures ex-

press superpositions of perfect matchings, and are used to

achieve exponential sized cancellations, and thereby expo-

nential speedups. Most holographic algorithms so far used

symmetric signatures. In this paper we use unsymmetric sig-

natures to give some new holographic algorithms. We also

prove a characterization theorem for a class of realizable un-

symmetric signatures, each of which may be used to design

new holographic algorithms.

1 Introduction

A central problem in the Theory of Computing is to de-
sign polynomial time algorithms for combinatorial prob-
lems. What makes a problem solvable or not solvable
in polynomial time is not well understood. It is gen-
erally conjectured that many combinatorial problems
in the class NP or #P are not solvable in polynomial
time, presumably it requires the accounting or process-
ing of exponentially many possibilities representing po-
tential solution fragments to the problem. The accepted
methodology consists of a two-pronged approach. On
the one hand, we have certain widely applicable algo-
rithm design principles to derive efficient algorithms,
such as divide and conquer, greedy algorithms, linear
programming, SDP programming, dynamic program-
ming, network flow, etc. On the other hand, when such
attempts fail, we try to prove the problem NP-hard or
#P-hard.

The theory of holographic algorithms was initiated
by Valiant [25]. It is an algorithmic methodology for
some seemingly exponential time computations. It
does that by evaluating certain exponential sums in
polynomial time [25, 1, 28, 5]. Somewhat analogous
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to quantum computing, information in these algorithms
is represented and processed through a choice of linear
basis vectors in an exponential “holographic” mix. The
algorithm is designed to create huge cancellations on
these exponential sums. Ultimately the computation
is reduced to the Fisher-Kasteleyn-Temperley (FKT)
method on planar perfect matchings [15, 16, 22] via
the Holant Theorem. Unlike quantum algorithms, these
give classical polynomial time algorithms.

To get a feel for holographic algorithms, we first
note that for most combinatorial problems, it is quite
natural to express the solution as a suitable exponential
sum. Take for instance the canonical NP-complete prob-
lem SAT. Its counting version is #P-complete. More-
over the problem remains complete for many restricted
classes. If we define #Pl-Rtw-Mon-3CNF to be the
counting problem which counts the number of satisfy-
ing assignments to a planar read-twice monotone 3CNF
formula Φ, it remains #P-complete. The syntactic re-
striction facilitates the formulation of the problem in the
theory of holographic algorithms which has an algebraic
framework, while at the same time retains its structural
complexity. The number of satisfying assignments to Φ
can be expressed as an exponential sum as follows. For
each clause C in Φ with 3 variables we define a vector
RC = (0, 1, 1, 1, 1, 1, 1, 1), where the entries are indexed
by 3 bits b1b2b3 ∈ {0, 1}3. Here b1b2b3 corresponds to
a truth assignment to the 3 variables, and RC corre-
sponds to a Boolean OR gate. Suppose in the formula
Φ a Boolean variable x appears in two clauses C and
C′. Then we use Gx = (1, 0, 0, 1)T, indexed by b1b2 ∈
{0, 1}2, to indicate that the fan-out value from x to C
and C′ must be consistent, i.e., they must be either 00
or 11. In the language of holographic algorithms these
RC and Gx are called signatures. Now we can form the
tensor products R =

⊗
C RC and G =

⊗
x Gx. Sup-

pose in the planar formula Φ there are exactly e edges
connecting various x’s to various C’s, then both R and
G have e indicies, each taking values in {0, 1}, and both
tensors have 2e entries. The indices of R = (Ri1i2...ie)
and G = (Gi1i2...ie) match up one-to-one according to
which x appears in which C. Then the exponential sum
〈R,G〉 =

∑
i1,i2,...,ie∈{0,1} Ri1i2...ieG

i1i2...ie counts ex-
actly the number of satisfying assignments to Φ. This
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is because each tuple (i1, i2, . . . , ie) ∈ {0, 1}e assigns a
value 0 or 1 to each connecting edge, and the product
Ri1i2...ieG

i1i2...ie is 1 when this is a consistent assign-
ment of truth values to each variable and the truth as-
signment satisfies each clause; the product value is 0
otherwise. (See more details in Section 2.)

Of course, it is not surprising that we can express
the answer to the problem (which is something that
can be computed in exponential time) as an exponential
sum. What is perhaps surprising is that for a variety
of combinatorial problems, holographic algorithms can
evaluate such an exponential sum in polynomial time.
This happens when suitable signatures are realizable.
In particular, for #Pl-Rtw-Mon-3CNF this theory can
evaluate the sum over the field Z7 [28]. This counts
the number of satisfying assignments mod 7 for Φ. In
addition to the #P-hardness of #Pl-Rtw-Mon-3CNF
(without the modulus), it is also known that counting
mod 2 for #Pl-Rtw-Mon-3CNF is NP-hard. Put in
this context, this success with counting mod 7 is rather
extraordinary (or “accidental” [28]).

In the successes of holographic algorithms so far,
mostly the signatures used have been symmetric sig-
natures. In the above example, the signatures RC =
(0, 1, 1, 1, 1, 1, 1, 1) and Gx = (1, 0, 0, 1)T are both sym-
metric. A signature is called symmetric if its entries
only depend on the Hamming weight of the index. For
symmetric signatures we have achieved a fairly complete
characterization [5].

In this paper we extend the reach of holographic al-
gorithms further, by giving polynomial time algorithms
to several problems using some newly discovered unsym-
metric signatures. These particular unsymmetric signa-
tures have been used for the first time. Moreover, in
all previous holographic algorithms, the planarity con-
dition is usually explicitly included in the problem state-
ment. The problems solved in this paper are not stated
with a planarity condition.

The success of finding a holographic algorithm for
a particular combinatorial problem typically boils down
to the existence of suitable signatures in a suitable
tensor space. This is called the realizability problem
for signatures. For the above problems we first prove
this realizability. In general, realizability is specified
by a family of algebraic equations. These families
of equations are non-linear, exponential in size, and
difficult to handle. But whenever we find a suitable
solution, we get an exotic polynomial time algorithm.

Beyond the concrete problems, in this paper we
also give a characterization theorem for an entire class
of realizable unsymmetric signatures. These signatures
can all be potentially used to design novel polynomial
time algorithms. The crux of this theorem involves

proving the orthogonality of a family of exponentially
sized matrices. These matrices are given implicitly so
that one does not even have an explicit formula for its
dimensions. But we show that distinct columns of the
matrix are mutually orthogonal by designing a suitable
involution which cancels out all the terms pair-wise in
the inner product of any two distinct columns.

2 Some Background
In this section we review some definitions and results.
More details can be found in [23, 25, 24, 3, 2, 1].

Let G = (V, E, W ), G′ = (V ′, E′, W ′) be weighted
undirected planar graphs. A generator matchgate Γ is
a tuple (G, X) where X ⊂ V is a set of external output
nodes. A recognizer matchgate Γ′ is a tuple (G′, Y )
where Y ⊂ V ′ is a set of external input nodes. The
external nodes are ordered counter-clock wise on the
external face. Γ is called an odd (resp. even) matchgate
if it has an odd (resp. even) number of nodes.

Each matchgate is assigned a signature tensor.
A generator Γ with n output nodes is assigned a
contravariant tensor G ∈ V n

0 of type
(
n
0

)
. Under the

standard basis b = [e1, e2] it has the form∑
Gi1i2...inei1 ⊗ ei2 ⊗ · · · ⊗ ein ,

where
Gi1i2...in = PerfMatch(G − Z),

where PerfMatch(G −Z) =
∑

M

∏
(i,j)∈M wij , is a sum

over all perfect matchings M in G − Z, and where Z is
the subset of the output nodes having the characteristic
sequence χZ = i1i2 . . . in. Similarly a recognizer Γ′ with
n input nodes is assigned a covariant tensor R ∈ V 0

n of
type

(
0
n

)
. This tensor under the standard (dual) basis

b∗ has the form∑
Ri1i2...in

ei1 ⊗ ei2 ⊗ · · · ⊗ ein ,

where
Ri1i2...in

= PerfMatch(G′ − Z),

where Z is the subset of the input nodes having χZ =
i1i2 . . . in. These values (Gi1i2...in) and (Ri1i2...in

) form
the standard signatures.

According to general principles [10], G and R
transform contravariantly and covariantly under a basis
transformation βj =

∑
i=1,2 eit

i
j , j = 1, 2,

Gi1i2...in =
∑

Gj1j2...jn t̃i1j1 t̃
i2
j2

. . . t̃in

jn
,

Ri1i2...in =
∑

Rj1j2...jn
tj1i1 tj2i2 . . . tjn

in
,

where (t̃ij) is the inverse matrix of (tij).
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A signature is called symmetric if its values only
depend on the Hamming weight of its indices. This
notion is invariant under a basis transformation.

A matchgrid Ω = (A, B, C) is a weighted planar
graph consisting of a disjoint union of: a set of g
generators A = (A1, . . . , Ag), a set of r recognizers
B = (B1, . . . , Br), and a set of f connecting edges
C = (C1, . . . , Cf ), where each edge Ci has weight 1
and joins an output node of a generator with a input
node of a recognizer, so that every input and output
node in every constituent matchgate has exactly one
such incident connecting edge.

Let G =
⊗g

i=1 G(Ai) be the tensor product of
all the generator signatures, and let R =

⊗r
j=1 R(Bj)

be the tensor product of all the recognizer signatures.
Then Holant(Ω) is defined to be the contraction of
the two product tensors, under some basis β, where
the corresponding indices match up according to the f
connecting edges Ck.

Holant(Ω) = 〈R, G〉
=

∑
x∈β⊗f

{
[Π1≤i≤gG(Ai, x|Ai)] · [Π1≤j≤rR(Bj , x|Bj )]

}
,

where β is any basis. The remarkable Holant Theorem
is

Theorem 2.1. (Valiant) For any matchgrid Ω over
any basis β, let G be its underlying weighted graph,

Holant(Ω) = PerfMatch(G).

This reduces the computation to the FKT algo-
rithm, which can compute the perfect matching poly-
nomial PerfMatch(G) for a planar graph in polynomial
time.

Let us look at the counting problem #Pl-Rtw-Mon-
3CNF mod 7 and its holographic algorithm more closely.
The claim is this: There exist (1) a suitable generator
matchgate A with two external nodes; (2) a suitable
recognizer matchgate B with three external nodes; and
(3) a particular basis β over the field Z7, such that the
following holds. Let the contravariant tensor G and
the covariant tensor R assigned to A and B have the
standard signatures (Gi1i2) and (Ri1i2i3) respectively.
Under the basis transformation βj =

∑
i eit

i
j , G and R

take the forms

(2.1) Gi1i2 =
∑
j1j2

Gj1j2 t̃i1j1 t̃
i2
j2

= (1, 0, 0, 1)T,

(2.2)
Ri1i2i3 =

∑
j1j2j3

Rj1j2j3t
j1
i1

tj2i2 tj3i3 = (0, 1, 1, 1, 1, 1, 1, 1).

To form our matchgrid Ω, we assign one generator
Ai for each variable xi and one recognizer Bj for each
clause Cj , where 1 ≤ i ≤ n and 1 ≤ j ≤ m, and
connect the wires as in Φ. Then we form the tensor
products G =

⊗n
i=1 G(Ai) and R =

⊗m
j=1 R(Bj).

Note that if we evaluate the Holant(Ω) = 〈R,G〉 under
the particular basis β, we accumulate 1 (this is done
mod 7 since the underlying field has characteristic 7)
for each valid Boolean assignment which satisfies the
formula, and 0 otherwise.

Now this exponential sum Holant(Ω) is actually
evaluated as the equivalent PerfMatch on the planar
graph of the matchgrid. Look closely how this expo-
nential sum is evaluated: Each term in the exponential
sum Holant(Ω) is itself replaced by an exponential sum
of perfect matchings (via standard signatures) by the
tensor product form of (2.1) and (2.2). Conversely, we
can consider the evaluation of PerfMatch, where each
perfect matching term in PerfMatch corresponds to an
exponential sum (a “holographic” mix) of the combina-
torial configurations of the satisfiability problem #Pl-
Rtw-Mon-3CNF (mod 7).

Standard signatures (of either generators or recog-
nizers) are characterized by the following two sets of
conditions. (1) The parity requirements: either all even
weight entries are 0 or all odd weight entries are 0. This
is due to perfect matchings. (2) A set of Matchgate
Identities (MGI) [1, 3]: Let G be a standard signature
of arity n (we use G here, it is the same for R). A pat-
tern α is an n-bit string, i.e., α ∈ {0, 1}n. A position
vector P = {pi}, i ∈ [l], is a subsequence of {1, 2, . . . , n},
i.e., pi ∈ [n] and p1 < p2 < · · · < pl. We also use p to
denote the pattern, whose (p1, p2, . . . , pl)-th bits are 1
and others are 0. Let ei ∈ {0, 1}n be the pattern with
1 in the i-th bit and 0 elsewhere. Let α + β be the
pattern obtained from bitwise XOR the patterns α and
β. Then for any pattern α ∈ {0, 1}n and any position
vector P = {pi}, i ∈ [l], we have the following identity:

(2.3)
l∑

i=1

(−1)iGα+epi Gα+p+epi = 0.

If G = β⊗nG satisfies the parity conditions, then G
is admissible on β. If G further satisfies all the MGIs
(then G is realizable as the standard signature of some
matchgate), then G is realizable on β.

3 A Family of Unsymmetric Signatures in b2
Basis

The basis b2 =
[(

1
1

)
,

(
1
−1

)]
is probably the most

successful basis in the design of holographical algo-
rithms. Most problems in Valiant’s first paper [25] used
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the basis b2. However, all the signatures based on b2
which have been used are symmetric. A complete char-
acterization of all the symmetric signatures using b2
was given in [1]. In [4], we further extended the char-
acterization theorem for symmetric signatures on all
bases. Followed from these characterization theorems,
we have achieved a satisfactory theory for holographic
algorithms using symmetric signatures [5].

Although symmetric signatures have a clear combi-
natorial meaning and therefore are very useful, some
combinatorial problems require unsymmetric signa-
tures. In this section, we introduce a family of unsym-
metric signatures, which is realizable on b2.

Theorem 3.1. For any a and b ∈ C, the following
signature for a generator with arity 4 is realizable on
b2.

(3.4) Gα =

⎧⎪⎨
⎪⎩

a, α ∈ {0101, 1010},
b, α ∈ {0011, 1100},
0, otherwise.

Proof:

G = (b2)⊗4G = (2a+2b, 0, 0,−2a+2b, 0, 2a−2b,−2a−2b,

0, 0,−2a− 2b, 2a− 2b, 0,−2a + 2b, 0, 0, 2a + 2b)T .

This 16-dimensional vector, indexed by {0, 1}4, has all
entries of odd Hamming weight equal to 0. So it satisfies
the parity condition. We can also verify that G satisfies
the unique (non-trivial) MGI for matchgates of arity 4
as follows:

G0000G1111 − G1100G0011 + G1010G0101 − G1001G0110

= (2a+2b)2− (2b− 2a)2 +(2a−2b)2− (−2a−2b)2 = 0.

A planar matchgate explicitly realizing this signature is
given in the Appendix (see Figure 1).

In the next section, we will show that this family
of signatures have very interesting special cases when
we choose suitable a and b. In Section 5, we will show
that this family of signatures are not only realizable on
the basis b2, but also realizable on an infinite family
of bases B2. This makes it potentially more useful
because they can be simultaneously realizable with
other signatures on some basis in B2. Furthermore,
Section 5 gives a characterization theorem for all the
signatures which are realizable on B2. From this,
we obtain a vast generalization as higher dimensional
extensions of this family. Since the size of signatures and
the number of MGIs will increase exponentially with
arity, the proof is much more involved than here (we
only have one non-trivial MGI for signatures of arity
4.)

4 Some Holographic Algorithms
Problem 1
Input: Given a set S of n points on a plane, where
no three points are colinear. Also given a set of edges
(straight line segments) between some pairs of points in
S. We assume no 3 edges intersect at a point (	∈ S).
Every point of S is incident to either 2 or 3 edges.
Output: The number of 2-colorings for the edges which
satisfy the following conditions: (1) for every point in S,
the incident edges are not monochromatic; (2) when two
edges cross over each other, they have different colors.
Solution: For every point in S with 2 incident edges,
we use a generator for (0, 1, 1, 0)T (for Not-Equal); for
every point with 3 incident edges, we use a generator for
(0, 1, 1, 1, 1, 1, 1, 0)T (for Not-All-Equal); for every point
(	∈ S) where two edges intersect, we use a generator with
arity 4 by setting a = 1 and b = 0 in (3.4); and finally
for every segment of an edge separated by points which
are either the end points of the edge (i.e., from S) or
the intersection points of edges, we use a recognizer for
(1, 0, 0, 1)T (for Equality). Then it can be seen that the
Holant is exactly the number of valid colorings. The
unsymmetric generator of arity 4 makes sure that the
color of the edge is transmitted at intersection points
while only allowing different colored edges to meet at
these intersection points. Because all the signatures
involved are realizable on b2, we have a polynomial time
algorithm for this problem. A formal description of the
holographic algorithm for this problem can be found in
the Appendix. Planar matchgates explicitly realizing
all the signatures involved here are also given in the
Appendix.

Problem 2
We extend Problem 1 by allowing curves (not necessar-
ily line segments) between two points of S. We assume
that every such curve between two points of S does not
go through additional points of S. Also any two curves
can share at most nO(1) points not in S, and no three
curves share such a point. Here “sharing a point” means
that they may cross each other or be tangent at the
point.
Solution: We use the same signatures as in Problem 1.
The additional situation is that two curves may be tan-
gent with each other rather than cross over at a point.
(Note that just pulling the tangent curves apart does
not guarantee that they are of different colors.) At such
a point, we use a generator with arity 4 by setting a = 0
and b = 1 in (3.4). Since this signature is also realizable
on b2, we have a polynomial time algorithms for this
problem.

Problem 3
Some graphs may not have any valid colorings satisfying
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all the requirements. Now we allow edges to change
colors on different segments. More precisely, at any
point where two curves meet (either transversal or
tangent to each other), we still require them to have
different colors, but now we allow them to either both
keep their colors or both change their colors. Other
requirements are the same as above. However, we still
want as few such changes as possible, and the problem
is to find the minimal number of changes such that at
least one valid coloring exists.
Solution: Signatures for original points and segments
of curves remain the same. For every cross point, we use
a generator with arity 4 by setting a = 1 and b = x in
(3.4). And for every tangent point, we use a generator
with arity 4 by setting a = x and b = 1 in (3.4).

Since they are all realizable on b2, we have a
polynomial time algorithm to compute the Holant. This
time the Holant is a polynomial of x. The degree of this
polynomial is bounded by nO(1), and the coefficients
all have at most nO(1) bits. The coefficient of xk is
the number of valid colorings with exactly k changes
of color. By the interpolation method, we can evaluate
the Holant a polynomial number of times with different
values of x, and compute the polynomial, and therefore
get the degree of the non-zero term of the smallest
degree.

We note that these problems are not a priori
about planar graphs due to intersecting edges. The
unsymmetric signatures (and their planar matchgates)
created the necessary planarity.

5 The Bases Set B2
In this section, we extend the basis b2 to a bases set
B2 defined as follows (note that we have b2 ∈ B2):

B2 =
{[(

n0

n1

)
,

(
p0

p1

)]
∈ GL2(C)

∣∣∣∣ n0p1 + n1p0 = 0
}

.

Based on the equivalence relation in the basis mani-
fold M (see [5]), we will use dehomogenized coordinates(

1 x
1 −x

)
for notational simplicity. (If there are excep-

tional cases (“at infinity”), they can be verified directly;
or one can invoke general theorems in algebraic geome-
try.)

We will give a complete characterization theorem of
all the signatures which are realizable on B2. The plan
is to first give a characterization of all the signatures
which are admissible on B2. Then we apply the set of
all MGIs to them to get the characterization theorem.

For the parity constraint, we assume they are
admissible as odd matchgate signatures (the case of
even matchgates is similar). Consider an arbitrary

(
1 x
1 −x

)
∈ B2, where non-singularity implies that x 	=

0. Under a basis transformation G =
(

1 x
1 −x

)⊗n

G,

the entry

(5.5) GT =

〈
n⊗

σ=1

[1, (−1)χ[σ∈T ]x], G

〉

=
∑

0≤i≤n−|T |
0 ≤ j ≤ |T |

xi(−x)j
∑

A ⊂ T c, |A| = i
B ⊂ T, |B| = j

GA∪B,

The polynomials should be identically zero when |T | is
even. This is the necessary and sufficient condition for
G to be admissible on B2. Thus for any T with |T |
even, the coefficient of xi in the polynomial of (5.5) is

(5.6)
∑
|S|=i

(−1)|S∩T |GS = 0.

When T ranges over all even subsets, we have a linear
system for GS . Thus we get n + 1 linear equation
systems according to the weight of S; the i-th linear
system, 0 ≤ i ≤ n, is over the set of variables GS with
|S| = i, where the equations are indexed by subsets T
with even cardinality. We define the coefficient matrix
of the system as M , which is indexed by T and S. Then
we have the following calculation of M TM :

(5.7) (M TM)S1,S2 =
∑

|T | is even

(−1)|S1∩T |(−1)|S2∩T |

=
∑

|T | is even

(−1)|(S1⊕S2)∩T |.

There are three cases: If S1⊕S2 = ∅, or if S1⊕S2 =
[n], we have

∑
|T | is even(−1)|(S1⊕S2)∩T | = 2n−1.

The third case is S1⊕S2 	= ∅ and S1⊕S2 	= [n]. We
can take two elements a and b such that a ∈ S1⊕S2 and
b 	∈ S1 ⊕ S2. Then we can give a perfect matching of
all the even subsets T by matching T and T ⊕ {a, b}
together. For each pair of T and T ⊕ {a, b}, one
contributes a +1 and the other contributes a −1 in
(5.7). They cancel out by each other, so overall we have∑

|T | is even(−1)|(S1⊕S2)∩T | = 0.
Now for the i-th system, for i = |S| 	= n/2, the case

S1 ⊕ S2 = [n] does not occur. So the matrix M TM is
2n−1I, which means that GS = 0, for all |S| 	= n/2. (In
particular, only trivial G ≡ 0 exists for n odd.)

If |S| = n/2, the n/2-th linear system gives GS =
−GSc

. For the even matchgate case (|T | is odd), it
gives GS = GSc

. This is also sufficient. So we have the
following theorem, which completely solves the problem
of admissibility for B2:
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Theorem 5.1. For a signature G with arity n, G is
admissible on B2 iff there exists ε = ±1 such that
GS = 0 for all |S| 	= n/2 and GS = εGSc

for all
|S| = n/2.

Now we move on to the more difficult question
of realizability. Realizability is more difficult than
admissibility because it is controlled by the set of
Matchgate Identities (MGI). These MGI are not only
exponential in size, but also non-linear. We will apply
all the MGIs to the signatures in the above theorem to
get our characterization theorem over B2.

For a β =
(

1 x
1 −x

)
∈ B2, let G = β⊗nG. The

problem is to characterize when G is realizable by an
even matchgate as a standard signature. (The case for
odd matchgate is similar.) From Theorem 5.1, we know
that GS = 0 for all |S| 	= n/2, and GS = GSc

for all
|S| = n/2. (For odd matchgates it would be GS =
−GSc

; we omit it here.) By the basis transformation
G = β⊗nG, we have (T is even):

GT = xn/2
∑

|S|=n/2

(−1)|T∩S|GS .

In the above equation, when substituted in any MGI,
xn/2 is just a global scaling factor. So we can just let
x = 1, without changing its realizability.

We consider an arbitrary MGI of G: for a pattern
set A (|A| is odd), position set P (|P | is even), we have

0 =
|P |∑
i=1

(−1)iGA⊕{pi}GA⊕P⊕{pi}

=
|P |∑
i=1

(−1)i
∑

|S1|=n/2

(−1)|(A⊕{pi})∩S1|GS1

∑
|S2|=n/2

(−1)|(A⊕P⊕{pi})∩S2|GS2

=
∑

|S1|=|S2|=n/2

GS1GS2

|P |∑
i=1

(−1)i(−1)|(A⊕{pi})∩S1|(−1)|(A⊕P⊕{pi})∩S2|.

Over all odd A and even P these are also sufficient
conditions. Note that for even matchgates, both A and
A⊕P must be odd (so that the single bit flips A⊕{pi}
and A ⊕ P ⊕ {pi} are even).

Because the sets A ⊕ {pi} and A ⊕ P ⊕ {pi} are
both even, the coefficients of the four terms GS1GS2 ,
GS1GSc

2 , GSc
1GS2 and GSc

1GSc
2 are all equal. Therefore

we can combine these four terms (and divide by 4) and

have

0 =
∑

|S1|=|S2|=n/2, 1∈S1∩S2

GS1GS2

|P |∑
i=1

(−1)i(−1)|(A⊕{pi})∩S1|(−1)|(A⊕P⊕{pi})∩S2|

=
∑

|S1|=|S2|=n/2, 1∈S1∩S2

GS1GS2(−1)|A∩(S1⊕S2)|

(−1)|P∩S2|
|P |∑
i=1

(−1)i(−1)|{pi}∩(S1⊕S2)|.

We identify a set X ⊂ [n] with its characteristic
vector in our notations. We call an X a single run iff it
is ∅, or [n], or as a 0-1 characteristic vector it consists of
a contiguous segment of 0’s and then 1’s, in a circular
fashion. We have the following theorem.

Theorem 5.2. For a signature G with arity n, G is
realizable on B2 iff there exists ε = ±1 such that

1. GS = 0 for all |S| 	= n/2;

2. GS = εGSc

for all |S| = n/2; and

3. for any pair (S1, S2), if GS1GS2 	= 0, then S1 ⊕ S2

is a single run.

Proof: First we denote X = S1⊕S2 and use S instead
of S2 in the above MGI (we note that X is an even set
and 1 	∈ X):
(5.8) ∑
|X| is even, 1
∈X

(−1)|A∩X| ∑
|S|=|S⊕X|=n/2, 1∈S

GSGS⊕X

(−1)|P∩S|
|P |∑
i=1

(−1)i(−1)|{pi}∩X| = 0.

The above equation is valid for all odd sets A and even
sets P . We define a set of valuables Y (X, P ) as

Y (X, P ) =

∑
|S| = |S ⊕ X| = n/2

1 ∈ S

GSGS ⊕ X(−1)|P ∩ S|
|P |∑
i=1

(−1)i + |{pi} ∩ X|.

We fix an arbitrary even P . Then let A go through all
the odd sets, we have a linear system for the valuables
Y (X, P ) from (5.8), where the variables are indexed by
even X not containing 1, and the equations are indexed
by odd A. The coefficient matrix of this system is
((−1)|A∩X|). This matrix has full rank, which can be
proved similarly as in the two out of three cases for (5.7).
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Note that for two X1 and X2, we have X1 ⊕ X2 	= [n],
because 1 	∈ X1 ⊕ X2.

Therefore we have for any even P and any even X
with 1 	∈ X ,
(5.9)∑
|S| = |S ⊕ X| = n

2
1 ∈ S

GSGS ⊕ X(−1)|P ∩ S|
|P |∑
i=1

(−1)i + |{pi} ∩ X| = 0.

Now we will fix an even X with 1 	∈ X , and view
(5.9) as a linear system on the variables GSGS⊕X , where
the equations are indexed by all even P .

First we show that if X is a single run, then (5.9)
always holds. If P ∩ X is even, since X is a single run
and is even, and P is even, it follows that there are an
even number of elements in both P ∩X and P ∩Xc. A
moment reflection shows that

∑|P |
i=1(−1)i(−1)|{pi}∩X| =

0.
If P ∩ X is odd, then by symmetry of S to S ⊕ X ,

the combined coefficient of GSGS⊕X = GS⊕XGS is
(−1)|P∩S| + (−1)|P∩(S⊕X)| = (−1)|P∩S|[1 + (−1)|P∩X|].
When P ∩ X is odd, this is 0. So we proved the “if”
part of this theorem.

Now we prove that the conditions in Theorem 5.2
are also necessary. We will show that in order to satisfy
all the MGI, for any even X with 1 	∈ X , if X is
not a single run, then for all S, GSGS⊕X = 0. This
is more difficult. The crux of the proof is to show
that a certain exponential sized matrix has mutually
orthogonal columns, a matrix which we don’t even have
an explicit formula for its dimension.

Fix an even X with 1 	∈ X . We assume X is not
a single run. Then we can pick a particular P with 4
elements, such that p1 < p2 < p3 < p4, and p2, p4 ∈ X
and p1, p3 	∈ X . This can be done greedily, e.g., pick
p1 = 1 (we know that 1 	∈ X). Then run from 1, 2, 3, . . .
till the first i ∈ X . That is our p2. Since X is not a
single run, by our definition X 	= ∅ in particular. So
p2 exists. Then the first one after that which is not in
X is p3. Being not a single run, such a p3 must exist.
Then there must be another one after p3, which belongs
to X , again by X being not a single run. This is our
p4 ∈ X . Now for this particular P , we can see that∑|P |

i=1(−1)i(−1)|{pi}∩X| 	= 0 .
For a fixed even X with 1 	∈ X , and X is not a

single run, consider the linear equation system:
For all even P such that

∑|P |
i=1(−1)i(−1)|{pi}∩X| 	=

0, and P ∩ X is also even,

(5.10)
∑

|S|=|S⊕X|=n/2, 1∈S

(−1)|P∩S|GSGS⊕X = 0.

Here the variables are all “GSGS⊕X”, where |S| =
|S ⊕ X | = n/2, 1 ∈ S. Note that, as shown above,

if P ∩ X is odd, then the combined coefficients of
GSGS⊕X = GS⊕XGS is zero in (5.9). (That proof
does not depend on X being a single run or not.) For
P ∩ X is even, the coefficients of GSGS⊕X = GS⊕XGS

are the same, which can be combined. Consequently
in (5.10) we combine the coefficients of GSGS⊕X =
GS⊕XGS , but only consider for P ∩ X even. After this
identification, the equation system in (5.10) (for a fixed
X satisfying the conditions) has equations indexed by
the P ’s satisfying its stated conditions, has variables
GSGS⊕X after the identification S with S ⊕ X . They
range over unordered pairs {S, S ⊕ X} obtained by
taking 1, and exactly half the elements of X and exactly
n
2 − |X|

2 −1 elements of [n]−{1}−X . We will not give a
closed-form formula for the number of equations indexed
by the P ’s; nevertheless, we will show that columns
of the matrix of the linear system (5.10) are mutually
orthogonal!

In the following, when we say, consider two “dis-
tinct” S and S′ in this equation system, we have the
following property: S ⊕ S′ is not any of the four sets:
∅, [n], X, Xc. (Not equal to ∅ because they are distinct;
not equal to [n] because both contain 1; not equal to
X because of the above identification; and finally not
equal to Xc because 1 	∈ S ⊕ S′ and yet 1 ∈ Xc.)

Our goal is to show, for the linear equation system
(5.10), the columns of “distinct” S and S′ are orthog-
onal. First some comments. We will not use explicitly
below the fact that X is not a single run to show or-
thogonality. Not being a single run was used to show
that the column coefficient vectors in (5.9) are non-zero
(for these vectors the entries are indexed by P as P runs
through all the appropriate sets, the set of vectors is in-
dexed by various S). In going from (5.9) to (5.10), we
have already taken that into account.

We had proved earlier that for X not a single run,
there exists some position vector P which makes the
sum

∑|P |
i=1(−1)i(−1)|{pi}∩X| 	= 0. For a fixed X , in

the linear equation system (5.9) the above quantity∑|P |
i=1(−1)i(−1)|{pi}∩X| does not depend on variables

GSGS⊕X indexed by S. We can collect those equations
(a non-empty subset of equations indexed by P ) in (5.9)
where the above quantity is non-zero, and factor out this
sum from each such equation. This gives us (5.10). Of
course in (5.9) those equations (indexed by P ) where
the above sum is zero is trivially satisfied. This means
that the orthogonality of the coefficient vectors in (5.10)
implies that all GSGS⊕X = 0 in (5.10) and therefore in
(5.9).

(For notational simplicity, we may consider the
equality GSGS⊕X = 0 above really for all S, and not
worry about S being half weight or S ⊕ X being half
weight. As otherwise they are obvious.)
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Now we wish to prove any two “distinct” column
vectors for S and S′ are orthogonal. Let’s consider the
condition

∑|P |
i=1(−1)i(−1)|{pi}∩X| 	= 0 more carefully.

Lay out the elements 1, 2, 3, . . . , n, and lay out the
elements of X in that order from left to right. It breaks
[n] into runs. Say 1, 2, . . . , a 	∈ X , a+1, a+2, . . . , b ∈ X ,
b+1, b+2, . . . , c 	∈ X , etc. We call [1, 2, . . . , a] an “out”
segment for X , [a + 1, a + 2, . . . , b] an “in” segment
for X , etc. Now consider going through elements of
P , also from 1 to n. Put down − and + alternately
under each such element of P , from p1 to the last P -
element. These record the factor (−1)i in the sum.
In each “in” and “out” segment of X , P will have
either an even or an odd number of elements. Since
|P | is even, there must be an even number of segments
(“in” or “out”) which have an odd number of P -
elements. A moment reflection will convince us that
whenever we have a segment which contains an even
number of P -elements, we can ignore that segment. It
does not affect the subsequent ± labelling. And for
either an “in” segment or an “out” segment of X , the
contribution of these even number of P -elements to the
sum

∑|P |
i=1(−1)i(−1)|{pi}∩X| is 0. So we can imagine

a sequence of “even-segment removal” operations as
follows: Whenever we see an “even segment” (either
an “in” or an “out” segment of X which contains an
even number of elements of P ), we can remove it, and
then merge the neighboring segments. This keeps the
segments to be alternately “in” and “out” for X , and P
is still even and therefore there remains an even number
of segments with an odd number of P -elements. We can
continue this process until no more “even segment” is
left. When this process ends, we have an even number of
“odd segments” left. They will still be alternately “in”
and “out” for X . Now the key observation is this: There
is nothing left (that even number = 0) iff that original
sum

∑|P |
i=1(−1)i(−1)|{pi}∩X| = 0. This is because every

“odd segment” that is left at the end contributes exactly
the same ±1 to the sum. If the even number of “odd
segments” left starts with an “in” segment for X , then
each segment contributes a +1; if it starts with an “out”
segment for X , then each segment contributes a −1.

Now consider two “distinct” S and S′, and consider
the inner product of their column vectors. Denote by
D = S⊕S′. Then D 	= ∅, [n], X, Xc. The inner product
is ∑

P

(−1)|P∩S|(−1)|P∩S′| =
∑
P

(−1)|P∩D|,

where P runs over all even subsets of [n] with P ∩ X

even, and satisfying
∑|P |

i=1(−1)i(−1)|{pi}∩X| 	= 0.
Now we design an involution (order 2 permutation)

with no fixed point on the set of all such P ’s: Since
D 	= ∅, [n], X, Xc, as we examine all elements from 1 to

n, there must be two elements next to each other, both
in X or both out of X , and one is in D and the other
one is out of D. (This is because: as D 	= ∅, [n], there
must be “changes” in membership of D as we go from 1
to n. And if all such changes coincide with boundaries
of “segments” (these are the change boundaries) of X ,
then either D = X or D = Xc, but both are ruled out.)
Thus there are i and i+1 which are in the same segment
of X (either “in” segment or “out” segment) such that
|D ∩ {i, i + 1}| = 1. We use this {i, i + 1} to define our
involution on the set of P ’s: P �→ P ′ = P ⊕ {i, i + 1}.

Note that P is even iff P ′ is even, and also, P ∩ X
is even iff P ′ ∩X is even. Moreover, in the “eliminating
the even segment” process described above both P and
P ′ will yield the same answer as to 0 or non-zero. Thus
the involution is an involution on the set of even P , with
P ∩X even, and such that

∑|P |
i=1(−1)i(−1)|{pi}∩X| 	= 0.

Finally in the sum
∑

P (−1)|P∩D|, the term
(−1)|P∩D| and (−1)|P

′∩D| cancel, since

(−1)|P
′∩D| = (−1)|P∩D|(−1)|{i,i+1}∩D| = −(−1)|P∩D|.

This completes the proof.

Theorem 3.1 is a special case of Theorem 5.2 when
n = 4. This is used in Section 4.
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Appendix:

A Formal Description of the Holographic
Algorithm for Problem 1
Algorithm:
Step 1: Construct a bipartite graph G(V1, V2) from the
input as follows:

• V1 contains all the points in S and all the points
where two lines intersect;

• V2 contains every segment of a line segment sepa-
rated by points which are either the end points of
the edge (i.e., from S) or the intersection points of
line segments;

• there is an edge between a point in V1 (either points
from S or intersection points of lines) and a line
segment in V2 iff this point is one of the ends of the
line segment.

(Note that G is a planar bipartite graph.)

Step 2: Construct a graph G′ by replacing each vertex
in G by a corresponding matchgate as follows:

• each degree 2 vertex in V1 is replaced by a generator
matchgate G2 with arity 2 (see Figure 4 );

• each degree 3 vertex in V1 is replaced by a generator
matchgate G3 with arity 3 (see Figure 2 );

• each degree 4 vertex in V1 (intersection point) is
replaced by a generator matchgate G4 with arity 4
(see Figure 3 );

• each vertex in V2 is replaced by a recognizer match-
gate R with arity 2 (see Figure 5)

(Note that G′ is a still a planar graph.)

Step 3: Use the PKT algorithm to compute
PerfMatch(G′) and output the result.
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Figures

Figure 1: This planar matchgate has standard signature
(2a + 2b, 0, 0,−2a + 2b, 0, 2a − 2b,−2a− 2b, 0, 0,−2a−
2b, 2a − 2b, 0,−2a + 2b, 0, 0, 2a + 2b)T . Here i =

√−1,
and we assume 2a + 2b 	= 0. (In case 2a + 2b = 0, a
similar matchgate will work.)
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Figure 2: Under basis b2, this generator matchgate has
the signature (0, 1, 1, 1, 1, 1, 1, 0)T . It makes sure that
the three incident edges of every degree 3 point in S are
not monochromatic.
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Figure 3: Under the basis b2, this generator matchgate
has the signature G, where G0101 = G1010 = 1 and
Gα = 0 for other α. It makes sure that the color
of the edge is transmitted at intersection points while
only allowing different colored edges to meet at these
intersection points.
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Figure 4: Under the
basis b2, this genera-
tor matchgate has the
signature (0, 1, 1, 0)T .
It makes sure that the
two incident edges of
every degree 2 point
in S have different col-
ors.
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Figure 5: Under
the basis b2, this
recognizer matchgate
has the signature
(1, 0, 0, 1). It makes
sure that each seg-
ment has a consist
coloring.
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