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Abstract

We consider a revenue optimizing seller selling a single
item to a buyer, on whose private value the seller has
a noisy signal. We show that, when the signal is kept
private, arbitrarily more revenue could potentially be
extracted than if the signal is leaked or revealed. We
then show that, if the seller is not allowed to make
payments to the buyer and if the value distribution
conditioning on each signal is regular, the gap between
the two is bounded by a multiplicative factor of 3.
We give examples showing that both conditions are
necessary for a constant bound on the gap to hold.

We connect this scenario to multi-bidder single-item
auctions where bidders’ values are correlated. Similarly
to the setting above, we show that the revenue of
a Bayesian incentive compatible, ex post individually
rational auction can be arbitrarily larger than that
of a dominant strategy incentive compatible auction,
whereas the two are no more than a factor of 5 apart
if the auctioneer never pays the bidders and if the
distribution is jointly regular. The upper bounds in
both settings degrade gracefully when the distribution
is a mixture of a small number of regular distributions.

1 Introduction

Revenue maximization in the sale of a single item to
a single buyer is a fundamental problem in mechanism
design. In the classical model, the buyer holds a private
value v for the item, and the seller only knows the
distribution D from which v is drawn. The revenue-
maximizing strategy of the seller is to offer the buyer
an optimal take-it-or-leave-it price. This simple fact
is one of the earliest insights offered by the revenue
optimization literature [15, 17], and also one of the key
building blocks of many recent approximation results in
more complicated scenarios [e.g. 7, 2].

Implicit in this classical model is a simple informa-
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tion structure: the buyer is completely informed, and
the seller only partially so. As a consequence, when
taking a price, the buyer usually derives a positive util-
ity knows as the information rent due to this informa-
tion asymmetry. In modern online markets, however,
there is often information asymmetry in the other di-
rection as well. Even if the buyer always knows fully
her value (which may or may not be the case in prac-
tice), the seller may still possess partial information of
which the buyer cannot be sure. For example, trans-
actions in the near past with other buyers may suggest
market trends which inform the seller but are not pre-
cisely known to the buyer. The notorious obscurity of
machine learning techonologies also contributes to such
asymmetry — whereas the seller may have more or less
accurate estimates on the buyer’s value based on various
observable attributes, the buyer may not be able to de-
termine which attributes of hers are picked up as cues,
and hence could not determine what estimate the seller
has. In these scenarios, the buyer is uncertain about
the information held by the seller, even though she is
completely informed of her value, seemingly the central
information in the transaction.

This paper studies the implication, on the seller’s
revenue, of information asymmetry of this kind. The
basic question we raise is: Are there nontrivial ways for
the seller to exploit this asymmetry so as to increase his
revenue? The answer, in short, is that sophisticated
exploitation is possible and in some cases could drive
up the revenue unboundedly compared with “näıve”
uses of this information asymmetry; however, under a
few conditions that seem naturally satisfied in practical
scenarios, the benefit of such sophistication is bounded
by a small muliplicative constant factor. Below we
explain what we mean by “sophisticated” and “näıve”
pricings, after we lay down the basic model.

The Model. We model the simplest information
asymmetry by having a value v and a signal s drawn
from a commonly known correlated distribution; the
buyer only sees her value v for the item and the seller
only sees s. The seller aims to optimize his revenue,
taking expectation over the joint distribution.

Näıve pricing: Upon observing s, the seller has a
distribution over v conditioning on s. We say the seller
näıvely uses the signal if he simply adopts the optimal
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strategy for each such conditional distribution, which
amounts to posting a take-it-or-leave-it price optimally
for each s. This is also the best strategy of the seller if s
is publicized or leaked. In an e-commerce scenario, this
could be the case where the seller publicizes his learning
algorithm or whichever information gathered pertaining
to the buyer.

It may come as a surprise that the näıve pricing
may not be optimal; after all, in a sense, it optimizes
the revenue pointwise. The suboptimality of this ap-
proach lies precisely in its failure to exploit information
asymmetry. Publicizing the signal reduces its worth to a
mere sharper estimte of the value distribution, and gives
up its uncertainty, when kept private, in the buyer’s
eyes. We show in Section 3.1 that this uncertainty can
be leveraged to elicit more information from the buyer
and hence increase the seller’s revenue, in some cases
by an arbitrarily large multiplicative factor.

Main result. Our upper bound on the worth
of concealing the signal is the most technically-
sophisticated part of the paper. Under two conditions,
we show that the optimal revenue with private signal
is no more than 3 times the revenue of optimal posted
price under each (public) signal. The first condition asks
that the seller never pay money to the buyer, which
seems a natural requirement in many scenarios. The
second condition requires that each conditional distri-
bution of the value v is regular in Myerson [15]’s sense.1

Viewed alternatively, our bound suggests that a seller
looking to boost the value of private signals may con-
sider making payments to the buyer occassionally or
sharpening the signals in such a way that the result-
ing conditional value distributions have interleaved sup-
ports (see Example 2 for an instance of this).

We remark that, in the literature on revenue opti-
mzation, regularity of value distributions usually does
not mitigate the gaps between revenues of different
mechanisms, not least because the most common dis-
tribution used in showing such large gaps, the equal
revenue distribution, is itself regular. As we explain
later, the regularity condition enters our analysis in a
non-standard way.

Regularity is often deemed a natural condition when
the buyer can be identified as a certain category of
customer, whereas uncertainty on the category results
in irregular distributions that is a mixture of regular
distributions [see, e.g., 19]. Our upper bound degrades
gracefully for mixtures of a small number of regular
distributions.

1Regularity is a standard notion in the literature of revenue
optimization, to be precisely defined in Section 2.

Connection to multi-bidder auctions. We are
not the first to observe that correlated external informa-
tion can be used to extract the buyer’s information rent.
For multi-bidder auctions where the bidders’ values are
drawn from correlated distributions, classical works by
Crémer and McLean [8, 9] showed ways to extract from
each bidder her full value by leveraging her competi-
tors’ bids. The similarity between the two settings is
immediate when one sees the competitors’ bids as pri-
vate signals. However, Crémer and McLean’s results do
not apply to us because we constrain our seller’s mech-
anism much more stringently: crucial for Crémer and
McLean’s mechanisms is that the auctioneer may charge
the buyer anything as long as the buyer, conditioning
on any value she holds, has nonnegative utility in expec-
tation (over the signals or her competitors’ bids). This
is known as interim individual rationality (IR). In con-
trast, we insist on the more realistic ex post individual
rationality, which stipulates that the buyer should never
have a negative utility no matter what signal is realized.
This key difference is what makes our examples of un-
bounded gaps more nontrivial and our constant upper
bound possible.

In multi-bidder auctions, the solution concept cor-
responding to näıve pricing or pricing with publi-
cized signals is dominant strategy incentive compatibil-
ity (DSIC), whereas the more sophisticated selling with
private signals corresponds to Bayesian incentive com-
patible (BIC) auctions. The second main contribution
of this paper is the first study of the revenues of DSIC
and BIC single-item auctions, which complements sev-
eral recent works that compare the revenues of DSIC
and BIC multi-item auctions [20, 22]. (Under the looser
interim IR constraint, a Crémer and McLean [9] shows
a gap between the optimal DSIC and BIC revenues, and
recently Albert et al. [1] fully characterized the gap.)

We show an unbounded gap between the revenues
of DSIC and BIC auctions (under ex post individual
rationality); with non-negative payments and regular
distributions, we show that Ronen [18]’s DSIC looka-
head auction 5-approximates the optimal BIC revenue.
The first part follows immediately from the single-buyer
examples, whereas the 5-approximation is technically
more nontrivial, as we discuss below.

Our techniques. The driving horse for our main
result is the duality framework which was recently pro-
moted by Cai et al. [4] and subsequently applied to var-
ious settings [e.g. 3, 12, 5, 14, 10]. The basic approach
is to write the optimal revenue of a target mechanism
(in our case, the revenue with private signals, or the
optimal BIC revenue) as the objective of a linear pro-
gram and then Lagrangify the IC and IR constraints;
the value of the resulting Lagrangian instantiated with
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any dual variables serves as an upper bound on the op-
timal revenue and can be used as a benchmark for ap-
proximation. What is peculiar about the argument in
this work is that, since the the signals’ uncertainty is
key to revenue maximization, the dual variables con-
trolling the buyer’s incentives cannot be engineered for
each value distribution conditioned on a signal. That is,
these dual variables cannot be functions of the signals.
On the other hand, standard dual variables giving rise
to the public signal revenue via Myerson’s virtual val-
ues are distribution dependent. In general, distribution-
independent dual variables do not give rise to upper
bounds that can be bounded by the virtual values. We
overcome this difficulty by constructing dual variables
which, besides the “virtual value terms”, generate an-
other term that grows in the worst case with the welfare.
A fairly non-standard argument shows that regularity
brings this extra term down to comparable with näıve
pricing revenues (or DSIC revenue in multi-bidder auc-
tions).

Multi-bidder auctions pose another difficulty. The
seller not only maximizes the revenue from each bidder,
but is also subject to the item’s availability; two bidders
cannot both be assigned the item. Revenue optimal
auctions are already complicated even under the more
stringent DSIC constraint and is unlikely to have a
succinct characterzation [e.g. 11, 16, 6]. One way to
disentangle multiple bidders’ interaction is provided by
Ronen [18]’s DSIC lookahead auction, which maximizes
the revenue from the highest bidders and gives up lower
bidders. Ronen showed that this 2-approximates the
optimal DSIC revenue. However, the natural extension
of Ronen’s auction to the BIC auctions fails, due
to a subtle reason we explain briefly at the end of
the paper (Section 5). Instead, we take the duality
approach again, and appeal to a property possessed
by the particular dual variables we constructed for the
single buyer case (Claim 4.1 in Section 4). This allows
us to bound the lower bidders’ contribution in the
Langrangian by twice the second price auction revenue,
and the problem boils down to maximizing revenue from
the highest bidder, which is a single buyer problem,
where we could apply our previous argument. We note
that bounding lower bidders’ contribution to revenue by
the second highest value is the essence of Ronen [18]’s
original proof, and the observation that this can be done
in the Langragian was implicit in several duality-based
works [e.g. 4, 13].

2 Preliminaries

Single-Buyer Pricing with Signals. A seller
tries to sell a single item to a buyer, who has a
private type t, which indicates the buyer’s value of the

item; throughout the paper we use type t and value
v interchangeably. The seller observes a private signal
s ∈ S. The pair (t, s) is drawn from a commonly known
joint distribution D, whose density function we denote
by f(·, ·). For a fixed signal s, we use D(t|s) to denote
the conditional distribution of t given the signal s and
denote its density function by f(t|s). We also write
F (t|s) :=

∫
t′≤t f(t′|s) dt′ as the conditional cumulative

density function. A selling mechanism consists of an
allocation rule x(v, s), indicating the probability with
which the buyer gets the item when she reports her
value as v and the seller sees signal s, and a payment
rule p(v, s), the payment made by the buyer to the seller.
We say the mechanism has no negative payment if p is
never negative, i.e., the seller never pays the buyer. The
expected revenue of a mechanism is E(v,s)∼D[p(v, s)].

In näıve pricing, or pricing with publicized or leaked
signals, the seller adopts, for each observed s, a mecha-
nism for the value distribution conditioned on s. Such
a mechanism needs to be (i) ex post individually ra-
tional (IR): for any v and s, vx(v, s) − p(v, s) ≥ 0,
and (ii) incentive compatible (IC): for any v, v′ and
s, v · x(v, s)− p(v, s) ≥ v · x(v′, s)− p(v′, s).

Definition 2.1. (Virtual Values) Given a value
distribution with density function f and cumulative den-
sity function F , the Myerson virtual value is ϕ(v) :=

v − 1−F (v)
f(v) . Given a joint distribution D on (v, s), we

denote by ϕ(v|s) the virtual value of v in the conditional
distribution F (v|s).

Lemma 2.1. (Myerson 1981) When the value distri-
bution is F (with no signal), a mechanism is IC only
if its allocation rule x is monotone non-decreasing
in v. Its expected revenue is the virtual surplus∫
v
ϕ(v)x(v) dF (v). The revenue-optimal mechanism for

any F posts a take-it-or-leave-it price.

Lemma 2.1 implies that with public signals, posting
a price which is optimal for each signal s maximizes the
seller’s revenue.

For mechanisms with private signals, besides being
(i) ex post IR, the IC constraint weakens to: (ii’) for all
v and v′, Es∼D(s|v)[v · x(v, s) − p(v, s)] ≥ Es∼D(s|v)[v ·
x(v′, s)− p(v′, s)], where D(s|v) denotes the conditional
distribution of s given v. Equivalently, the constraint
can be written as

∫
s
(v · x(v, s) − p(v, s))f(v, s) ds ≥∫

s
(v · x(v′, s)− p(v′, s))f(v, s) ds.

Definition 2.2. A value distribution F (without sig-
nals) is regular if its support is an interval [l, h] ⊂ R,
and its virtual value ϕ is nondecreasing on [l, h]. A dis-
tribution D on (v, s) is jointly regular if the conditional
distribution of v given any signal s is regular.
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Single-item (Multi-bidder) Auctions. In a sin-
gle item auction, one indivisible good is to be allocated
to at most one of n bidders. Bidder i has a private
type ti ∈ R, and the types are drawn from a possibly
correlated, commonly known joint distribution D. We
write t = (t1, . . . , tn) to denote the profile of types and
t−i = (t1, . . . , ti−1, ti+1, . . . , tn). A mechanism (auc-
tion) is specified by its allocation rules xi : t 7→ [0, 1]
and payment rules pi : t 7→ R, for each bidder i. The
utility of bidder i is ui(t) = ti · xi(t) − pi(t). The al-
location rules are required to satisfy the feasbility con-
straint:

∑
i xi(t) ≤ 1, for all t and i.

Similar to the IC constraint under public signals in
single buyer pricing, a mechanism is dominant strategy
incentive compatible (DSIC) if for each bidder i, each
type profile t, and any deviation t′i,

ti · xi(t)− pi(t) ≥ ti · xi(t′i, t−i)− pi(t′i, t−i).

Similar to the IC constraint under private signals, an
auction is Bayesian incentive compatible (BIC) if for
each bidder i with type ti and possible deviation t′i,

Et−i∼D(t−i|ti) [ti · xi(t)− p(t)]
≥Et−i∼D(t−i|ti) [ti · xi(t′i, t−i)− p(t′i, t−i)] ,

where D(t−i|ti) denotes the distribution of t−i condi-
tioned on bidder i’s type being ti. A mechanism is ex
post individually rational (IR) if, for any bidder i and
any type profile t, ti ·xi(t)−pi(t) ≥ 0 and interim IR if
Et−i∼D(t−i|ti)[ti · xi(t)− pi(t)] ≥ 0 for any bidder i and
her type ti.

Myerson [15]’s seminal paper showed that, for a
product distribution D, a DSIC, ex post IR auction
maximizes revenue among all BIC, interim IR auction.
In sharp contrast, for correlated distributions, Crémer
and McLean [8, 9] showed that, except for degenerate
cases, interim IR auctions can extract full surplus, i.e.,
Et[maxi ti]. Throughout this paper we require the
mechanisms to be ex post IR.

The Lookahead Auction. Ronen [18]’s looka-
head auction reduces multi-bidder DSIC revenue maxi-
mization to pricing for a single bidder, while retaining
at least half of the optimal revenue.

Definition 2.3. ((Dominant Strategy) Looka-
head Auction) For each bid vector t, the lookahead
auction chooses the highest bidder i∗, and offers an op-
timal take-it-or-leave-it price conditioning on (i) t−i∗
and (ii) ti∗ being the highest type.

Theorem 2.1. (Ronen 2001) The dominant strategy
lookahead auction is DSIC and ex post IR, and extracts
at least half of the revenue of the optimal DSIC, ex post
IR auction.

We designate Ronen’s auction as the dominant
strategy lookahead auction, to distinguish it from its
natural extension for BIC auctions, which we call the
Bayesian lookahead auction. However, we are not able
to show general revenue guarantee for the latter. (See
Section 5 for a discussion.)

Lagrangian Relaxations. Proving revenue ap-
proximation results via partial Lagrangians was pro-
moted by Cai et al. [4]. We review the basic idea here.
Consider any constrained optimization problem:

(2.1)

maximize: f(x)

subject to: gα(x) ≥ 0, ∀α ∈ A
x ∈ C

Let µ be any nonnegative measure on A.
The Lagrangian of (2.1) is L(x, λ) := f(x) +∫
A
gα(x)λ(α) dµ(α), where λ ∈ RA are called the

Lagrange multipliers, or the dual variables. The
following fact is immediate.

Fact 2.1. Let C′ be C ∩ {x | gα(x) ≥ 0,∀α ∈ A} and
assume C′ 6= ∅. Then for any λ ≥ 0, the optimal value
of (2.1) is bounded above by supx∈C′ L(x, λ).

Lagrangifying only some constraints (here gα(x) ≥
0) while leaving others (here x ∈ C) proves often
convenient for L to be used as a benchmark to be
approximated. In revenue maximization, often the IC
and IR constraints are Lagrangified, while the feasibility
constraints are left aside.

Equal Revenue Distributions. Our large gap
examples make use of the so-called (truncated) equal
revenue distributions, which are standard distributions
with an unbounded gap between the surplus E[v] and
the optimal revenue extractable.

Definition 2.4. (Equal Revenue Distribution)
An equal revenue distribution truncated at h is
supported on [1, h], with cumulative density function

F (v) =

{
1− 1

v , for v ∈ [1, h);
1, if v = h.

It is easy to verify that E[v] ≈ log h, whereas any posted
price extracts revenue of only 1. Note that the equal
revenue distribution is regular.

3 Single-Buyer Pricing with Signals

In this section we consider the problem of single-buyer
single-item pricing with signals, and show our first main
result:

Theorem 3.1. In the single-buyer pricing problem with
signals, suppose the distribution is jointly regular and
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there is no negative payment, then the revenue achiev-
able by a mechanism with private signals is bounded by 3
times the revenue extractable by näıve pricing, or mech-
anisms with public signals. Moreover, if the distribution
is a mixture of k jointly regular distributions, the gap
between the two is bounded by 3k.

Before we give the proof in Section 3.2, it is
instructive to see two examples, given in Section 3.1,
which demonstrate that both conditions required by
Theorem 3.1 (nonnegative payment and joint regularity)
are necessary for the gap between private and public
signal revenues to be finitely bounded.

3.1 Examples with Unbounded Value of Pri-
vate Signals Our first example shows that the seller
may make payments to the buyer to drastically amplify
the power of private signals.

Example 1. Let the buyer’s value v be drawn from an
equal revenue distribution truncated at H (see Defini-
tion 2.4). For ε > 0, let the signal s be equal to v with
probability ε, and s = ∗ otherwise.

Note that the distribution in this example is jointly
regular. By the property of equal revenue distribution,
with public signals, the revenue is at most 1 + ε lnH.
The next theorem shows that, with private signals,
the seller can get revenue Ω((1 − ε) ln lnH); when ε
approaches 0 (i.e., the “informative” signals vanish), the
latter is arbitrarily more in comparison. The mechanism
extracting this revenue is nontrivial, with randomized
allocations and, contrary to what may seem natural,
pays the buyer when s is informative. Such negative
payments entice the buyer to always report her true
value.

Theorem 3.2. The optimal revenue with private sig-
nals is Ω((1− ε) ln lnH).

Proof. We first describe the mechanism. Recall that we
use x and p to denote allocation and payment rules.
Let x(v, ∗) be ln v

lnH , and p(v, ∗) = vx(v, ∗) = v ln v
lnH . Note

that, when reporting her true value, the buyer receives
utility 0 under the uninformative signal s = ∗. All in-
centives for truth-telling comes from when s is informa-
tive: when s is some value w, x(v, w) = p(v, w) = 0 for
any v 6= w; when v and w agree, x(v, w) = 1, and the
buyer receives a reward carefully chosen to satisfy the
IC constraints: let g(z) be maxy

ln y
lnH (z − y); p(v, v) is

set to be − f(v,∗)f(v,v)g(v), where f is the density function of

the equal revenue distribution.
We relegate the proofs of the following two claims

to Appendix A.

Claim 3.1. The mechanism defined above is IC and ex
post IR.

Claim 3.2. For all z ≥ 1, g(z) ≤ z ln z
lnH . If z ≥ e, g(z) ≤

ln z−ln ln z+1
lnH · z.

We now calculate the expected revenue of the
mechanism, which boils down to showing that the
payment lost to the buyer under informative signals is
far more than offset by the revenue gained under the
uninformative signal:

Rev =

∫ H

1

f(v, ∗)p(v, ∗) dv +

∫ H

1

f(v, v)p(v, v) dv

=

∫ H

1

f(v, ∗)(p(v, ∗)− g(v))

≥
∫ H

e

f(v, ∗)
(

ln v

lnH
· v − ln v − ln ln v + 1

lnH
· v
)

dv

=(1− ε)
∫ H

e

1

v
· ln ln v − 1

lnH
dv

=(1− ε) · 1

lnH
· (ln v ln ln v − 2 ln v)

∣∣∣∣H
e

≥(1− ε) · (ln lnH − 2),

where the first inequality follows from Claim 3.2.

Our second example shows that, in a mechanism
that make no negative payments, private signals can
still blow up the revenue by an arbitrarily large factor if
the supports of the conditional value distributions given
different signals are allowed to interleave in arbitrary
ways, a situation that would be precluded by joint
regularity.

Example 2. Fix a large integer h. Signal s is uni-
formly distributed on {0, 1}h. Conditioning on a re-
alization of s, let the support of the conditional value
distribution be Ts := {3k+sk : k = 1, 2, · · · , h}, and the
value conditioning on s is drawn from the discrete equal
revenue distribution supported on Ts, i.e.,

Pr [v = ti|s] = f(ti|s) :=

{
1
ti
− 1

ti+1
, i < h

1
th
, i = h,

where t1 < t2 < . . . < th are the elements of Ts. f(v|s)
is 0 for v /∈ Ts.

The optimal revenue under public signals is easily
seen to be 1. Under private signals, we argue that the
following mechanism is IC and extracts a revenue of
Ω(lnh): Let x(v, s) be 1 if f(v|s) > 0, and 0 otherwise;
let p(v, s) be 1

3v if f(v|s) > 0, and 0 otherwise.
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For any value v that the buyer has, telling the truth
gets her utility Es[x(v, s)·v−p(v, s)] = 2

3v. By reporting
any other value, the probability that her report would
agree with the corresponding coordinate of s is only 1

2 ,
which means the probability of winning the item would
be at most 1

2 , and her utility under deviation cannot be
more than 1

2v. This shows that the mechanism is IC. Its
revenue is clearly a third of the buyer’s expected value,
which is Ω(lnh).

Remark 1. In Example 2, the distribution is not
jointly regular, despite its conditional value distribution
resembling discretized equal revenue distributions. Once
one tries to “pad” the gaps in the supports to make the
density nonzero everywhere, the power of the private sig-
nals disappears. This remark is not meant to contrast
discrete and continuous distributions; the point is that
certain operations that are taken for granted in the ab-
sence of signals cannot be performed in correlated set-
tings, due to the interaction among different signals.

3.2 Proof of Theorem 3.1: Bounded Power
of Private Signals under Regualrity and Non-
negative Payments We now prove Theorem 3.1. The
optimal revenue by a mechanism with private signal
and nonnegative payments is the value of the following
optimzation problem:
(3.2)

max :

∫
s

∫
t

f(t, s)p(t, s) dt ds

s.t.:

∫
s

f(t, s)(t · x(t, s)− p(t, s)) ds

≥
∫
s

f(t, s)(t · x(t′, s)− p(t′, s)) ds ∀t, t′

t · x(t, s)− p(t, s) ≥ 0 ∀t, s
p(t, s) ≥ 0 ∀t, s

To prove Theorem 3.1, we will attempt to bound
a partial Lagrangian relaxation of (3.2). To that end,
let L(x, p, λ, µ) be the Lagrangian relaxation defined as
follows.

(3.3)

L(x, p, λ, µ) :=

∫
s

∫
t

f(t, s)p(t, s) dt ds

+

∫
t

∫
t′
λ(t, t′)

(∫
s

f(t, s)
(
t · (x(t, s)− x(t′, s))

− (p(t, s)− p(t′, s))
)

ds
)

dt′ dt

+

∫
s

∫
t

µ(t, s)f(t, s)(t · x(t, s)− p(t, s)) dt ds.

Without loss of generality, we will assume x(t, s) =
p(t, s) = 0 whenever f(t, s) = 0 as the partial La-
grangian remains unchanged. Applying Fact 2.1, we

easily see that the value of (3.2) is upper bounded by
infλ,µ≥0 sup(x,p)∈F L(x, p, λ, µ).

Using Fubini and some rearrangement of (3.3) gives,
whenever (x, p) is feasible,

L(x, p, λ, µ)

=

∫
s

∫
t

p(t, s)
(
f(t, s)−

∫
t′
f(t, s)λ(t, t′)dt′

+

∫
t′
f(t′, s)λ(t′, t)dt′ − f(t, s)µ(t, s)

)
dt ds

+

∫
s

∫
t

x(t, s)
(
tf(t, s)µ(t, s) +

∫
t′
tf(t, s)λ(t, t′) dt′

−
∫
t′
t′f(t′, s)λ(t′, t) dt′

)
dt ds.

A key step in this proof is to choose values for the
dual variables λ and µ so that the resulting L acts as a
meaningful upper bound that can be approximated by
the optimal revenue with public signals.

We first argue that the values of µ’s are determined
by those of λ’s. Since the only constraint on p(t, s)
is that of nonnegativity, the coefficient of any p(t, s)
should be nonpositive in order for L to be a finite bound.
This gives a lower bound for each µ(t, s) whenever the
values of λ’s are fixed. The first double integral above
involving the payments can therefore be removed, and
only the second one involving the allocations gives L
its value. Here, obviously x(t, s) should be 1 if its
coefficient is positive and 0 otherwise. It is easy to see
that sup(x,p)∈F L(x, p, λ, µ) is non-decreasing in µ, and
therefore µ should be equal to either 0 or the lower
bound mentioned, whichever is larger. The problem
therefore boils down to choosing values for the λ’s.2

Define

λ∗(t, t′) =

{
2
t , t > 0, t′ ≤ t
0, otherwise.

g(t, s) := f(t, s)−
∫
t′
f(t, s)λ∗(t, t′) dt′

+

∫
t′
f(t′, s)λ∗(t′, t) dt′.

Then, as explained above, we may let µ∗(t, s) be such
that f(t, s)µ∗(t, s) = [g(t, s)]+, where [y]+ denotes
max{0, y}.

2Note that in what follows we crucially make use of the
nonnegativity of the payments. If the payments were allowed
to be negative, the coefficients of p(t, s) would have to be 0,
which means each µ would be equal to what previously was a
lower bound. The nonnegativity constraint on µ therefore imposes
constraints on the choice of λ’s. In particular, our choice of λ’s
would have violated these constraints.
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We introduce another shorthand notation to make
it easy to write sup(x,p)∈F L(x, p, λ∗, µ∗):

h(t, s) :=

∫
t′
tf(t, s)λ∗(t, t′) dt′ −

∫
t′
t′f(t′, s)λ∗(t′, t) dt′.

We can then bound L(x, p, λ∗, µ∗) by

L(x, p, λ∗, µ∗)

≤
∫
s

∫
t

x(t, s)
(
tf(t, s)µ∗(t, s) +

∫
t′
tf(t, s)λ∗(t, t′) dt′

−
∫
t′
t′f(t′, s)λ∗(t′, t) dt′

)
dt ds

=

∫
s

∫
t

x(t, s) ([tg(t, s)]+ + h(t, s)) dt ds.

We will see in Lemma 3.2 that x(t, s)h(t, s) is twice
the virtual surplus of type t under signal s, and therefore
is easy to be related to the revenue with public signals.
On the other hand, t · g(t, s) differs from the negative
of virtual value in a tantalizing way. It is intuitive that
this difference is easier to bound than the expression
itself; adding half of h(t, s) has that effect. The following
lemma paves the way towards this intuition. Its proof
and all other missing proofs in this section can be found
in Appendix B.

Lemma 3.1. The revenue of any mechanism with pri-
vate signals and nonnegative prices is upper bounded by

(3.4)

∫
s

∫
t

([
tg(t, s) +

1

2
h(t, s)

]
+

+ [h(t, s)]+

)
dt ds.

Our choice of λ is independent of the signal and so
we may bound the inner integral of (3.4) for each s. Let
DRev(s) denote the contribution to the optimal revenue
under public signals under signal s. The following
lemma is the only place where we need the regularity
assumption:

Lemma 3.2. If the distribution is jointly regular, then
for all signals s, ∫

t

[h(t, s)]+ dt ≤ 2 ·DRev(s),∫
t

[
t · g(t, s) +

1

2
h(t, s)

]
+

dt ≤ DRev(s).

Now we put together what we have shown so far:
by Lemma 3.1, the revenue of any mechanism with
private signal and nonnegative payments is bounded
above by (3.4). Assuming joint regularity and applying
Lemma 3.2, we have that the inner integral of (3.4) is
bounded above by 3 DRev(s). Hence, the revenue of any

BSIC mechanism is bounded above by 3
∫
s

DRev(s)ds =
3 DRev.

When the distribution is a mixture of k jointly
regular distributions, all arguments remain true except
that the bounds in Lemma 3.2 degrade by a factor of k.
We relegate the details to Appendix B.

4 Multi-bidder Auctions

In this section we consider the revenues of DSIC and
BIC multi-bidder auctions with correlated values. Our
examples in Section 3.1 can be easily translated to
multi-bidder distributions, showing:

Corollary 4.1. In multi-bidder auctions with corre-
lated values, if the auctioneer is allowed to make pay-
ments to the bidders, or if the value distribution is not
jointly regular, the revenue of the optimal BIC mecha-
nism can be more than that of any DSIC mechanism by
an arbitrarily large factor.

For completeness, we give a proof for the corollary
in Appendix C. The main result of this section is that
the bound we gave in Theorem 3.1 for the single-buyer
problem can be extended to multi-bidder auctions, with
the loss of another constant factor. It is tempting to
use Ronen [18]’s lookahead auction (see Definition 2.3)
which reduces the multi-bidder problem to extracting
revenue from the highest bidder. However, Ronen’s
proof does not directly apply to BIC mechanisms due
to subtle reasons we discuss in Section 5. Instead, we
are able to carry on a “lookahead type of argument” in
the partial Lagrangian under no negative payment and
regularity: almost coincidentally, the dual variables we
constructed in the proof of Theorem 3.1 have a property
needed for such an argument (Claim 4.1).

Theorem 4.1. In a multi-bidder auction with jointly
regular distribution, the revenue of the lookahead auc-
tion is at least 1

5 that of the optimal BIC mechanism not
using negative payments. Furthermore, if the the distri-
bution is a mixture of k jointly regular distributions, the
bound is 1

3k+2 .

Proof. Following an approach similar to Section 3.2, we
show the following lemma, whose proof and other miss-
ing proofs from this section can be found in Appendix C.

Lemma 4.1. The revenue of the optimal BIC, ex post
IR mechanism is at most

max
x≥0

∫
t

∑
i

xi(t) {[gi(t)ti]+ + hi(t)} dt,

s.t.
∑
i

xi(t) ≤ 1, ∀t,
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where

gi(t) = −f(t) + 2

∫
t′i>ti

f(t′i, t−i)

t′i
dt′i,

hi(t) = 2f(t−i) [tif(ti|t−i)− (1− F (ti|t−i)] .

Claim 4.1. For any t and i, [gi(t)ti]++hi(t) ≤ 2tif(t).

Let Ui ⊆ T denote the set of type profiles in
which bidder i is considered the potential winner by the
lookahead auction. Recall that t ∈ Ui implies that ti
is a highest type in t. Let secmax(t) denote the second
highest type in vector t. We further partition L(µ∗, λ∗):

L(µ∗, λ∗)

≤max
x≥0

∑
i

{∫
t∈Ui

∑
i′

xi′(t)([ti′gi′(t)]+ + hi′(t)) dt

}

≤max
x≥0

∑
i

∫
t∈Ui

∑
i′ 6=i

xi′(t)([ti′gi′(t)]+ + hi′(t)) dt

(4.1)

max
x≥0

∑
i

∫
t∈Ui

xi(t)([tigi(t)]+ + hi(t)) dt

s.t.
∑
i

xi(t) ≤ 1.

Note that maxi′ 6=i{ti′} = secmax(t) for all t ∈ Ui.
Hence, by Claim 4.1 and that

∑
i′ 6=i xi′(t) ≤ 1, we can

bound the first term of (4.1) by∑
i

∫
t∈Ui

2 max
i′ 6=i
{ti′}f(t) = 2

∫
t

secmax(t)f(t) dt

which is twice the revenue of the second price auction.
With slight modification of the argument in the proof of
Theorem 3.1 (see Lemma C.1 in Appendix C), one can
show that the second term of (4.1) is upper bounded
by 3k times the revenue of the lookahead auction
when the distribution is a mixture of k jointly regular
distributions. This completes the proof of Theorem 4.1.

5 Discussion and An Open Question

In this work we give a fairly complete characterization,
up to constant multiplicative factors, of revenue differ-
ences between disclosed and private side information
when pricing for a single buyer, and of revenues dif-
ferences between DSIC and BIC auctions for multiple
bidders with correlated values. We find that regularity
in the value distribution and the absence of negative
payments are necessary and sufficient for these differ-
ences to be relatively small.

In connecting these two settings, we used an argu-
ment that is reminiscent of Ronen [18]’s proof for his

lookahead auction (Definition 2.3). However, our proof
relies on the two mentioned conditions and our particu-
lar choice of dual variables. Ronen’s original proof can-
not be straightforwardly carried over for BIC auctions,
and we briefly explain the reason here.

One property trivially true for DSIC auctions is con-
venient for showing the approximate optimality of the
lookahead auction: given an optimal DSIC auction, if
one were to zero out all the allocations and payments
for all bidders except for the highest, the remaining auc-
tion is still DSIC. This is not necessarily true for BIC
auctions. A bidder holding a certain value is sometimes
the highest bidder, and sometimes not; her expected
utility is affected by her allocations and payments when
her value is not the highest. Removing these alloca-
tions and payments may invalidate the IC constraints.
Therefore, by restricting an auction to only allocating to
the highest bidders, it is unclear whether it would still
be able to extract as much revenue as an unrestricted
auction from the highest bidders.3

We therefore leave open the following interesting
question: for multiple bidders with correlated values,
can a BIC auction that allocates only to the highest
bidders extract a constant fraction of the optimal BIC
auction’s revenue?

References

[1] Albert, M., Conitzer, V., and Lopomo, G. (2016).
Maximizing revenue with limited correlation: The
cost of ex-post incentive compatibility. In Proceed-
ings of the Thirtieth AAAI Conference on Artificial
Intelligence, AAAI’16, pages 376–382.

[2] Babaioff, M., Immorlica, N., Lucier, B., and Wein-
berg, S. M. (2014). A simple and approximately op-
timal mechanism for an additive buyer. In FOCS,
pages 21–30. IEEE Computer Society.

[3] Brustle, J., Cai, Y., Wu, F., and Zhao, M. (2017).
Approximating gains from trade in two-sided markets
via simple mechanisms. In EC, pages 589–590. ACM.

[4] Cai, Y., Devanur, N. R., and Weinberg, S. M.
(2016). A duality based unified approach to bayesian
mechanism design. In STOC, pages 926–939. ACM.

[5] Cai, Y. and Zhao, M. (2017). Simple mechanisms
for subadditive buyers via duality. In STOC, pages
170–183. ACM.

3This also calls to mind the comparison between β-exclusive
and β-adjusted revenues considered by Yao [21] for multi-item
auctions with bidders with additive values. It is also unclear
whether Yao’s argument can be applied here.

Copyright © 2018 by SIAM
Unauthorized reproduction of this article is prohibited2540

D
ow

nl
oa

de
d 

12
/1

1/
18

 to
 2

02
.1

21
.1

32
.1

2.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



[6] Caragiannis, I., Kaklamanis, C., and Kyropoulou,
M. (2016). Limitations of deterministic auction de-
sign for correlated bidders. Transactions on Compu-
tation Theory, 8(4):13:1–13:18.

[7] Chawla, S., Hartline, J. D., Malec, D. L., and Sivan,
B. (2010). Multi-parameter mechanism design and
sequential posted pricing. In STOC, pages 311–320.
ACM.
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A Proofs from Section 3.1

Proof. [Proof of Claim 3.1] Showing ex post IR is
straightforward: for the informative signals, it is easy
to see p(v, w) ≤ 0 ≤ x(v, w) · v for all v, w; for s = ∗,
p(v, ∗) equals x(v, ∗) · v by definition. We now show
that mechanism is also IC. By reporting her true value,
a buyer with value v has expected utility

1

f(v, ∗) + f(v, v)

(
f(v, ∗) · 0− f(v, v) · p(v, v)

)
=

f(v, ∗)
f(v, ∗) + f(v, v)

· g(v).

By telling her value as w, the buyer would have expected
utility

1

f(v, ∗) + f(v, v)

(
f(v, ∗) · (v · x(v, ∗)− p(v, ∗)) + f(v, v) · 0

)
=

f(v, ∗)
f(v, ∗) + f(v, v)

· lnw

lnH
(v − w) ≤ f(v, ∗)

f(v, ∗) + f(v, v)
· g(v),

where the inequality holds by the definition of g(z).

Proof. [Proof of Claim 3.2]
Let h(y) = ln y · (z − y). Observe that when y > z,

h(y) < 0 ≤ z ln z and when y ≤ z, h(y) ≤ z ln z,
the first part of the claim is trivial. Now suppose
z ≥ e. Then h′(y) = 1

y (z − y) − ln y. Hence the

maximum of g(z) is achieved when y(ln y+1) = z. This
implies ln y ≤ ln z − ln ln z + 1, otherwise y(ln y + 1) >
ez
ln z (ln z−ln ln z+2) ≥ z. Therefore, g(z) = ln y

lnH (z−y) ≤
ln z−ln ln z+1

lnH · z when z ≥ e.
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B Proofs from Section 3.2

Proof. [Proof of Lemma 3.1] The optimal revenue is
bounded above by

sup
(x,p)∈F

L(x, p, λ∗, µ∗)

≤ sup
(x,p)∈F

∫
s

∫
t

x(t, s) ([tg(t, s)]+ + h(t, s)) dt ds

=

∫
s

∫
t

[[tg(t, s)]+ + h(t, s)]+ dt ds.

Let T+ denote {(t, s) : g(t, s) ≥ 0} and let 1T+
be its

indicator function, then∫
s

∫
t

[[tg(t, s)]+ + h(t, s)]+ dt ds

=

∫
s

∫
t

[tg(t, s) + h(t, s)]+1T+
dt ds

+

∫
s

∫
t

[h(t, s)]+1T+
dt ds

≤
∫
s

∫
t

[
tg(t, s) +

1

2
h(t, s)

]
+

1T+
dt ds

+
1

2

∫
s

∫
t

[h(t, s)]+1T+
dt ds+

∫
s

∫
t

[h(t, s)]+1T+
dt ds

≤
∫
s

∫
t

([
tg(t, s) +

1

2
h(t, s)

]
+

+ [h(t, s)]+

)
dt ds.

Proof. [Proof of Lemma 3.2] By definition, we have that

t · g(t, s) = 2
∫
t′≥t

tf(t′,s)
t′ dt′ − tf(t, s) and

h(t, s) = 2tf(t, s)− 2

∫
t′≥t

f(t′, s) dt′

= 2f(s) [tf(t|s)− 2[1− F (t|s)] = 2f(s, t)ϕ(t|s).

where f(s) :=
∫
t′
f(t′, s) dt′ is the marginal density of s,

and f(t|s), F (t|s) and ϕ(t|s) are the conditional density,
conditional cumulative density and conditional virtual
value of t given s, respectively. By Myerson’s lemma
(Lemma 2.1),

∫
t
[h(t, s)]+ dt is bounded by 2 DRev(s).

For the second part of the statement, we have∫
t

[
t · g(t, s) +

1

2
h(t, s),

]
+

dt

=

∫
t

t ·
[
2

∫
t′≥t

f(t′, s)

t′
dt′ −

∫
t′≥t

f(t′, s)

t
dt′
]
+

dt.

We first show that there exists 0 ≤ l ≤ u such that the
integrand is positive only on an interval [l, u]. Let ψs(t)

be 2
∫
t′≥t

f(t′,s)
t′ dt′ −

∫
t′≥t

f(t′,s)
t dt′. Then

dψs
dt

(t) =− 2
f(t, s)

t
+

∫
t′≥t

f(t′, s)

t2
dt′ +

f(t, s)

t

=− f(t, s)

t2

(
t− 1− F (t|s)

f(t|s)

)
=− f(t, s)

t2
ϕ(t|s).

By joint regularity, ϕ(t|s) is nondecreasing so ψs(t) has
at most two roots. In particular, there exists 0 ≤ l ≤ u
such that ψs(t) ≥ 0 if and only if l ≤ t ≤ u. For any
r ∈ R≥0 we have∫

t≤r
t · ψs(t) dt

=

∫
t≤r

2

∫
t′≥t

tf(t′, s)

t′
dt′ dt−

∫
t≤r

∫
t′≥t

f(t′, s) dt′ dt

=

∫
t′

∫
t≤min{r,t′}

2tf(t′, s)

t′
dt dt′

−
∫
t′

∫
t≤min{r,t}

f(t′, s) dt dt′

=

∫
t′≤r

(∫
t≤t′

2tf(t′, s)

t′
dt− t′f(t′, s)

)
dt′

+

∫
t′>r

(∫
t≤r

2tf(t′, s)

t′
dt− rf(t′, s)

)
dt′

=

∫
t′>r

(
r2

t′
− r
)
f(t′, s) dt′ ≤ 0.

On the other hand, for any r ∈ R≥0,

−
∫
t≤r

t · ψs(t) dt =−
∫
t′>r

(
r2

t′
− r
)
f(t′, s) dt′

≤r
∫
t′≥r

f(t′, s) dt′ ≤ DRev(s).

Thus,
∫
t
[t·g(t, s)+ 1

2h(t, s)]+dt =
∫
l≤t≤u t·ψs(t)dt =∫

t≤u t · ψs(t) dt−
∫
t≤l t · ψs(t) dt ≤ DRev(s).

Proof. [Proof for Mixture of k joingly regular distribu-
tions] Adapting the same flow variables λ(·, ·) as the
proof for Theorem 3.1, we only need to prove the fol-
lowing variation of Lemma 3.2: if f(·, s) is a mixture of

k regular distributions, that is, f(t, s) =
∑k
i=1 αifi(t, s),

where each fi is the density of a jointly regular distri-
bution, and

∑
i αi = 1, with αi ≥ 0,∀i, then∫

t

[h(t, s)]+ dt ≤ 2k ·DRev(s),∫
t

[
t · g(t, s) +

1

2
h(t, s)

]
+

dt ≤ k ·DRev(s).
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As before, we have

h(t, s) = 2tf(t, s)− 2

∫
t′≥t

f(t′, s) dt′,∫
t

[
t · g(t, s) +

1

2
h(t, s),

]
+

dt =

∫
t

t ·
[
2

∫
t′≥t

f(t′, s)

t′
dt′

−
∫
t′≥t

f(t′, s)

t
dt′
]
+

dt.

Using the fact that [x+ y]+ ≤ [x]+ + [y]+, we have∫
t

[h(t, s)]+ dt ≤
∑
i∈[k]

2αi

∫
t

f(t, s)[ϕis(t)]+ dt,

∫
t

[
t · g(t, s) +

1

2
h(t, s),

]
+

dt

≤
∑
i∈[k]

αi

∫
t

t ·
[
2

∫
t′≥t

fi(t
′, s)

t′
dt′

−
∫
t′≥t

fi(t
′, s)

t
dt′
]
+

dt,

where ϕis denotes the conditional virtual value of the
i-th regular distribution given signal s. Now apply the
argument in Section 3.2 to get∫

t

f(t, s)[ϕis(t)]+ dt ≤ 2 DRevi(s),∫
t

t ·
[
2

∫
t′≥t

fi(t
′, s)

t′
dt′ −

∫
t′≥t

fi(t
′, s)

t
dt′
]
+

dt

≤ DRevi(s),

where DRevi(s) denotes the part of the optimal DSIC
revenue for distribution fi(·, s) from signal s. Observing
that αi DRevi(s) ≤ DRev(s) for all i, we conclude the
proof.

C Proofs from Section 4

Proof. [Proof of Corollary 4.1] Take either example from
Section 3.1, we construct a two-bidder auction where
the revenue of the optimal BIC mechanism is at least
the revenue in the example under private signals, and
revenue of the optimal DSIC mechanism is arbitrarily
close to the optimal revenue under disclosed signals.
In both examples, the signal space S is finite, and
we can number the signals by integers so that S =
{1, 2, · · · , |S|}. For every (v, s) in the single-buyer
example, let bidder 1’s value be v, and bidder 2’s
value be s · ε/|S| for an arbitrarily small ε > 0.
Take any single-buyer selling mechanism with private
signals, use its allocation and payment rules for bidder 1
while taking bidder 2’s value as the signal (while never

allocating or charging anything to bidder 2), then the
resulting auction is BIC and extracts the same revenue
as in the single-buyer example. On the other hand, if
pricing under disclosed signals extracts at most revenue
R from the single buyer, then any DSIC auction for
the two-bidder setting can extract at most R from
bidder 1, and at most ε from bidder 2 (because of
individual rationality). The corollary follows by taking
ε sufficiently small.

Proof. [Proof of Lemma 4.1] We consider the linear
program that returns the revenue of the optimal BIC
multi-bidder auction without negative payments.

max
x,p

∫
t

f(t)
∑
i

pi(t) dt

s.t.

∫
t−i

f(ti, t−i)[ti · xi(ti, t−i)− pi(ti, t−i)] dt−i

≥
∫
t−i

f(ti, t−i)[ti · xi(t′i, t−i)− pi(t′i, t−i)] dt−i ∀i, ti, t′i

ti · xi(t)− pi(t) ≥ 0, ∀i, t
pi(t) ≥ 0, ∀i, t∑
i

xi(t) ≤ 1, ∀t

xi(t) ≥ 0, ∀i, t

This revenue is upper bounded by the following
partial Lagrangian, for any µ, λ ≥ 0:

L(µ, λ)

:= max
x,p

∫
t

f(t)
∑
i

pi(t) dt

+

∫
t

∑
i

µi(t)[ti · xi(t)− pi(t)] dt

+
∑
i

∫
ti

∫
t′i

λi(ti, t
′
i)

{∫
t−i

f(ti, t−i)[ti · xi(ti, t−i)

− pi(ti, t−i)− ti · xi(t′i, t−i) + pi(t
′
i, t−i)]dt−i

}
dtidt

′
i

= max
x,p

∑
i

∫
t

pi(t)

{
f(t)− µi(t) +

∫
t′i

[
λi(t

′
i, ti)f(t′i, t−i)

− λi(ti, t′i)f(ti, t−i)
]
dt′i

}
dt

+
∑
i

∫
t

xi(t)

{
µi(t)ti +

∫
t′i

[
ti · λi(ti, t′i)f(ti, t−i)

− t′i · λi(t′i, ti)f(t′i, t−i)
]
dt′i

}
dt
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s.t. pi(t) ≥ 0, ∀i, t∑
i

xi(t) ≤ 1, ∀t

xi(t) ≥ 0, ∀i, t

Similarly to the proof of Theorem 3.1, we try the
following dual variables:

λ∗i (ti, t
′
i) =

{
2
ti
, ti > 0, t′i ≤ ti;

0, otherwise.

Again, define

gi(t) :=f(t)−
∫
t′i

f(t)λ∗i (ti, t
′
i) dt′

+

∫
t′i

f(t′i, t−i)λ
∗
i (t
′
i, ti) dt′i

=− f(t) + 2

∫
t′i>ti

f(t′i, t−i)

t′i
dt′i,

hi(t) =

∫
t′i

ti · λ∗i (ti, t′i)f(t) dt′i

−
∫
t′i

t′i · λ∗i (t′i, ti)f(t′i, t−i) dt′i

=2f(t−i) [tif(ti|t−i)− (1− F (ti|t−i)] .

Let µi(t) be [gi(t)]+. Then

L(µ∗, λ∗) ≤max
x≥0

∫
t

∑
i

xi(t) {[gi(t)ti]+ + hi(t)} dt,

s.t.
∑
i

xi(t) ≤ 1, ∀t.

Proof. [Proof of Claim 4.1] The claim is easily seen by a
case analysis. For gi(t) ≤ 0, [gi(t)ti]+ + hi(t) = hi(t) ≤
2f(t)ti, as 1− F (ti|t−i) ≥ 0. For gi(t) ≥ 0, we have

[gi(t)ti]+ + hi(t)

=tif(t) + 2

[∫
t′i>ti

tif(t′i, t−i)

t′i
dt′i −

∫
t′i>ti

t′if(t′i, t−i)

t′i
dt′i

]
≤tif(t).

Lemma C.1. Let Revi be the revenue extracted from
bidder i by the lookahead auction, then

max
0≤xi(t)≤1

xi(t)

∫
t∈Ui

([tigi(t)]+ + hi(t)) dt,

is bounded by 3 Revi, where gi and hi are defined as
in (4.1),

Proof. By the same argument as in the proof of
Lemma 3.1, we have

max
0≤xi(t)≤1

xi(t)

∫
t∈Ui

([tigi(t)]+ + hi(t)) dt

≤
∫
t∈Ui

[tigi(t) +
1

2
hi(t)]+ + [hi(t)]+ dt.

By the same calculation as in the proof of Lemma 3.2,
hi(t) is 2f(t)ϕi(ti|t−i), where ϕi(ti|t−i) is the vir-
tual value of ti in the distribution conditioning on
t−i. By joint regularity, D(ti|t−i) is regular, and so
D(ti|t−i, ti > maxi′ 6=i ti′) is also regular. Therefore∫

t∈Ui

[hi(t)]+ dt = 2 Revi .

As for the term [tigi(t)+ 1
2hi(t)]+, from the calcula-

tion in Lemma 3.2, we know that, fixing any t−i, tigi(t)
is nonnegative only on an interval [l, u], and∫

ti≤u:(ti,t−i)∈Ui

(
tigi(t) +

1

2
hi(t)

)
dti ≤ 0,

−
∫
ti≥l:(ti,t−i)∈Ui

(
tigi(t) +

1

2
hi(t)

)
dti

≤l
∫
ti≥l:(ti,t−i)∈Ui

f(ti, t−i) dti

≤max(l,max
i′ 6=i

ti′)

∫
ti≥l:(ti,t−i)∈Ui

f(ti, t−i) dti,(C.1)

where the RHS of (C.1) is upper bounded by the revenue
of the lookahead auction when the bidders other than i
bid t−i. Therefore,∫

t∈Ui

[tigi(t) +
1

2
hi(t)]+ dt ≤ Revi .
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