
Zeros of Holant problems: locations and algorithms ∗

Heng Guo † Chao Liao ‡ Pinyan Lu § Chihao Zhang ¶

Abstract
We present fully polynomial-time (deterministic or ran-
domised) approximation schemes for Holant problems, de-
fined by a non-negative constraint function satisfying a gen-
eralised second order recurrence modulo a couple of excep-
tional cases. As a consequence, any non-negative Holant
problem on cubic graphs has an efficient approximation al-
gorithm unless the problem is equivalent to approximately
counting perfect matchings, a central open problem in the
area. This is in sharp contrast to the computational phase
transition shown by 2-state spin systems on cubic graphs.
Our main technique is the recently established connection
between zeros of graph polynomials and approximate count-
ing. We also use the “winding” technique to deduce the
second result on cubic graphs.

1 Introduction
Great progress has been made recently in the classifi-
cation of counting problems. One major achievement
is the full dichotomy for counting constraint satisfac-
tion problems (CSPs) [Bul13, DR13], even with com-
plex weights [CC17]. However, such a classification is
for exact counting, and for approximation, even to move
beyond some rather modest model seems quite difficult.

Holant problems [CLX11] are a framework of ex-
pressing counting problems motivated by Valiant’s holo-
graphic algorithms [Val08]. The “Holant” is a partition
function on graphs where edges are variables and ver-
tices are constraint functions. The benefit of this choice
is the ability to express problems like perfect matchings,
which are provably not expressible in certain CSP-like
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vertex models [FLS07, DGL+12, Sch13]. We parame-
terise Holant problems by the set of constraint func-
tions that can be put on vertices. Similar to the suc-
cess of classifying counting CSPs, exact classifications
have been obtained for Holant problems defined by any
set of complex-weighted symmetric Boolean functions
[CGW16], and various progresses have been made to go
beyond [CLX18, LW18, Bac18].

In this paper, we make progress towards under-
standing the complexity of approximating symmetric
Boolean Holant problems with non-negative weights.
Let G = (V,E) be a graph, π : V → F be an assignment
from the set of vertices V to a set of functions F , and
fv = π(v) is the constraint function {0, 1}deg(v) → C
associated with the vertex v. The “Holant” is defined
as follows:

Z(G;π) :=
∑

σ∈{0,1}E

∏
v∈V

fv(σ|E(v)),(1.1)

where E(v) is the set of adjacent edges of v, and σ|E(v)

is the restriction of σ on E(v). We use the shorthand
Z(G) or Z when G and π are clear from the context.

We call a Boolean constraint function f symmetric,
if f(x) depends only on the hamming weight |x| and
is invariant under permutations of the indices. For a
symmetric f of arity d, we associate it with a signature
[f0, f1, . . . , fd], where fi = f(x) if |x| = i. We may
use the term “constraint function” and “signature”
interchangeably. For example, if f is the “exact-one”
function, namely f = [0, 1, 0, . . . , 0], then Z(G) counts
the number of perfect matchings in G; and if f is the
Boolean OR function, namely f = [0, 1, 1, . . . , 1], then
Z(G) counts the number of edge covers in G.

We focus on a fairly expressive family of symmet-
ric functions satisfying generalised second-order recur-
rences. More precisely, we say f = [f0, f1, . . . , fd] satis-
fies a generalised second-order recurrence, if there exist
real constants (a, b, c) ̸= (0, 0, 0) such that afk+bfk+1+
cfk+2 = 0 for all 0 ≤ k ≤ d−2. Denote by Holant(f) the
computational problem of evaluating Z(G) where every
vertex is associated with the signature f . In particular,
the input to Holant(f) must be a d-regular graph, where
d is the arity of f . Our main theorem is the following.

Theorem 1.1. Let f = [f0, f1, . . . , fd] be a symmetric
constraint function of arity d ≥ 3 satisfying generalised
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second-order recurrences, and fi ≥ 0 for all 0 ≤ i ≤
d. There is a fully polynomial-time (deterministic or
randomised) approximation algorithm for Holant(f),
unless, up to a non-zero factor, f or its reversal is in
one of the following form:

• [0, λ sin π
d , λ

2 sin 2π
d , . . . , λi sin iπ

d , . . . , 0] for some
λ > 0;

• [0, 1, 0, λ, 0, . . . , 0, λ
d−2
2 , 0] if d is even, or

[0, 1, 0, λ, 0, . . . , 0, λ
d−1
2 ] if d is odd, for some

0 ≤ λ < 1.

Moreover, in the latter case, approximating Holant(f) is
equivalent to approximately counting perfect matchings
in general graphs.

Understanding the complexity of signatures with
second-order recurrences is the cornerstone in the exact
counting classifications. Since satisfying first-order
recurrences implies that the function is degenerate,
these constraint functions are the first class satisfying
a recurrence relation with non-trivial complexity. More
concretely, this family includes many interesting special
cases:

• Matchings and perfect matchings, whose constraint
functions are [1, 1, 0, 0, . . . , 0] and [0, 1, 0, 0, . . . , 0],
respectively, with (a, b, c) = (0, 0, 1).

• Even subgraphs, whose constraint functions are
[1, 0, 1, 0, . . . ] with (a, b, c) = (1, 0,−1). More gen-
erally, we may put weights on even and odd de-
gree vertices, and the constraint functions become
[x, y, x, y, . . . ] for some x, y ≥ 0.

• Edge covers, whose constraint functions are
[0, 1, 1, . . . , 1] with (a, b, c) = (0, 1,−1).

• Fibonacci gates, namely f of arity d such that
fi+2 = bfi+1 + fi for all 0 ≤ i ≤ d− 2.

• All ternary symmetric functions.

For approximate counting, polynomial-time approxi-
mation algorithms are known only for a few special
cases, such as counting matchings [JS89], weighted
even subgraphs [JS93], counting edge covers [LLL14],
and a weighted version of Fibonacci gates [LWZ14].
However, neither the Markov chain Monte Carlo ap-
proach [JS89, JS93] (including its “winding” extension
[McQ13, HLZ16]), nor the correlation decay approach
[LWZ14, LLL14], appears to be powerful enough to han-
dle all functions in this family. On the other hand, The-
orem 1.1 covers almost all problems in this family, and
most of the exceptional cases are equivalent to counting

perfect matchings, a central open problem in approxi-
mate counting (see, for example, [DJM17, ŠVW18] on
partial progresses and barriers). Efficient approximate
counting algorithm for perfect matchings is only known
in the bipartite case [JSV04].

As a consequence, we have an algorithm for all non-
negative Boolean Holant on cubic graphs, unless the
problem is equivalent to counting perfect matchings.

Theorem 1.2. Let f = [f0, f1, f2, f3] be a symmetric
constraint function of arity 3 where fi ≥ 0 for all
0 ≤ i ≤ 3 . Holant(f) has a fully polynomial-time
(deterministic or randomised) approximation algorithm,
unless f or its reversal, up to a non-zero factor, is
[0, 1, 0, λ] for some 0 ≤ λ < 1. In the exceptional case,
approximating Holant(f) is equivalent to approximately
counting perfect matchings in general graphs.

We remark that Theorem 1.2 is in sharp contrast
to the computational phase transition phenomenon, as
demonstrated by 2-state spin systems on cubic graphs
[GJP03, SS14, GŠV16, LLY13, SST14], even without
external fields. For spin systems, a clear and sharp
threshold between approximable and hard to approx-
imate is established, whereas for Holant problems on
cubic graphs, there seems to be no such transition.

1.1 Our techniques Our algorithm combines a num-
ber of ingredients:

• Barvinok’s approach to approximate partition
functions via Taylor expansions [Bar16]. This ap-
proach was sharpened by Patel and Regts [PR17a]
to run within polynomial-time.

• In order to apply Barvinok’s approach, one has to
have some rather precise knowledge of the zeros of
the corresponding graph polynomials. For Holant
problems, Ruelle [Rue71, Rue99a, Rue99b] has de-
veloped a systematic approach of bounding the ze-
ros of the partition function via analysing polyno-
mials associated locally with vertices, under the dis-
guise of “graph-counting polynomials”.

• On top of combining Ruelle’s and Barvinok’s ap-
proaches, we also employ holographic transforma-
tions a la Valiant [Val08], which is necessary to
cover all cases in Theorem 1.1.

Although none of these ingredients is new, the main
contribution of our work is to combine them together
(with reworks if necessary), and a thorough analysis
of the zeros of functions with generalised second-order
recurrence. To be more specific, for a symmetric
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signature f = [f0, . . . , fd] of arity d, define the “local”
polynomial of f as

Pf (z) :=

d∑
i=0

(
d

i

)
fi · zi.(1.2)

We may also view Pf (z) as the polynomial for a single
vertex with d dangling edges. For some ε > 0, we call
a polynomial P (z) Hε-stable, if P (z) ̸= 0 as long as
ℜz > −ε. Then one of our main technical tool (see
Theorem 3.1) says that if Pf (z) is Hε-stable for some
ε > 0, then a polynomial-time approximation algorithm
exists for Holant(f).

In general, to apply Barvinok’s method to approx-
imate counting, one needs to deal with the zeros of
the whole partition function, which is usually not an
easy task. Previous applications appeal to some pow-
erful tools such as the Lee-Yang theorem from statisti-
cal physics [LSS17], or the resolution of a long-standing
conjecture [PR17b]. In contrast, our approach requires
only analysing some low degree polynomials and is much
easier to apply.

To go from Theorem 1.1 to Theorem 1.2, we also
need to deal with cases not covered by Theorem 1.1,
which cannot be solved using zeros of Holant problems.
These exceptional cases are handled by the “winding”
technique [McQ13, HLZ16] with Markov chains.

2 Ruelle’s method on zeros of Holant problems
Ruelle [Rue71, Rue99a, Rue99b] (building upon the
“Asano contraction” [Asa70]) has developed a system-
atic approach to bound zeros of the so-called “graph-
counting polynomials”. As we will see later, these poly-
nomials coincide with unweighted Holant problems.

With a little abuse of notation, let Z(G; f) be the
partition function defined by (1.1) where fv = f for all
v ∈ V , and stratify Z(G; f) by the number of edges
chosen as follows:

Zk(G; f) :=
∑

σ∈{0,1}E and |σ|=k

∏
v∈V

f(σ|E(v)).(2.3)

Define Zk(G;π) similarly, and again, G and f may be
omitted when they are clear from the context.

Let |E| = m. Then Z = Z(G; f) can be rewritten
as the evaluation of the polynomial

PG(z) :=

m∑
i=0

Zi · zi(2.4)

at z = 1. Namely Z = PG(1). When f is a symmetric
0/1 function, then (2.4) is the same as the “graph-
counting” polynomial defined by Ruelle [Rue99b].

Ruelle’s method has two main ingredients. Firstly
we want to relate zeros of a univariate polynomial with
those of its polar form. For a polynomial P (z) =∑d′

i=0 aiz
i of degree d′ ≤ d, its dth polar form with

variables z = (z1, . . . , zd) is

P̂ (z) :=
∑
I⊆[d]

a|I|(
d
|I|
)zI ,

where ai = 0 if i > d′, [d] denotes {1, 2, . . . , d}, and for
an index set I, zI =

∏
i∈I zi. For example, the polar

form of Pf (z) (recall (1.2)) is,

P̂f (z) :=
∑
I⊆[d]

f|I|zI .

The polar form P̂ (z) is the unique multi-linear sym-
metric polynomial of degree at most d′ such that
P̂ (z, z, . . . , z) = P (z). When d′ < d, we view P (z) as a
degenerate case, and it has zeros at ∞ with multiplicity
d− d′.

Let H be a set in C and we use H = {z ∈ C | z ̸∈ H}
to denote its complement. We say a polynomial P (z)
in d ≥ 1 variables is H-stable if P (z) ̸= 0 whenever
z1, . . . , zd ∈ H. We will be particularly interested in
Hε-stableness where Hε is the half-plane:

Hε = {z ∈ C | ℜz > −ε} ,

and ε > 0. The Grace-Szegő-Walsh coincidence theorem
[Gra02, Sze22, Wal22] has the following immediate
consequence.
Proposition 2.1. A univariate polynomial P (z) is Hε-
stable if and only if its polar form P̂ (z) is Hε-stable.
Proposition 2.1 actually applies to an arbitrary circular
domain in C, but we will only need it for Hε.

The next ingredient is the Asano contraction
[Asa70], as extended by Ruelle [Rue71].

Proposition 2.2. Let K1 and K2 be closed subsets of
the complex plane C, which do not contain 0. If the
complex polynomial

α+ βz1 + γz2 + δz1z2

can vanish only when z1 ∈ K1 or z2 ∈ K2, then

α+ δz

can vanish only when z ∈ −K1 ·K2.

We refer interested readers to [Rue71] for a very elegant
proof of Proposition 2.2.

Let the δ-strip of [0, 1] be

{z ∈ C | |ℑz| ≤ δ and − δ ≤ ℜz ≤ 1 + δ} .
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Lemma 2.1. For any ε > 0, the complement of −Hε·Hε

contains a δ-strip of [0, 1] for some δ > 0 depending only
on ε.

Proof. An equivalent way to write Hε is

Hε =

{
ρeiθ | ρ ≥ − ε

cos θ
for θ ∈

(
π

2
,
3π

2

)}
.

Thus,

−Hε ·Hε =

{
ρ1ρ2e

i(θ1+θ2+π) | ρi ≥ − ε

cos θi

for θi ∈
(
π

2
,
3π

2

)
and i ∈ {1, 2}

}
=

{
ρei(θ1+θ2+π) | ρ ≥ ε2

cos θ1 cos θ2

for θ1, θ2 ∈
(
π

2
,
3π

2

)}
=

{
ρeiθ | ρ ≥ ε2(

cos θ−π
2

)2 for θ ∈ (0, 2π)

}

=

{
ρeiθ | ρ ≥ 2ε2

1− cos θ
for θ ∈ (0, 2π)

}
,

where the third line is because cos θ1 cos θ2 is maximised
at θ1 = θ2 if their sum is fixed. Thus the complement
of −Hε ·Hε is

−Hε ·Hε =

{
ρeiθ | ρ <

2ε2

1− cos θ
for θ ∈ (0, 2π)

}
.

It is easy to check that δ = ε2/2 suffices for the claim.

Now we are ready to state a very useful lemma.

Lemma 2.2. Let f be a symmetric signature of arity
∆. If the local polynomial Pf (z) is Hε-stable for some
ε > 0, then the global polynomial PG(z) has no zero in
the δ-strip of [0, 1], where δ is a constant depending only
on ε.

Proof. We construct G = (V,E) as follows. Start
with a collection of vertices v ∈ V , each with ∆
dangling half-edges (evi )i∈[∆]. Call this graph G0,
and connect dangling half-edges evi and euj sequentially
for each edge (u, v) ∈ E. This gives a sequence of
graphs G1, . . . , G|E| = G. The polynomial of G0 is
PG0(z) =

∏
v∈V Pv(z), where Pv = Pf , and consider

the multivariate version P̂G0
(z) =

∏
v∈V P̂v(z

v), where
P̂v = P̂f and zv is the local variables corresponding to
v. Since Pf (z) is Hε-stable, by Proposition 2.1, P̂f (z) is
as well, and so is P̂G0

(z). Suppose from Gi to Gi+1, evi
is connected with euj . Then the transformation from

P̂Gi
to P̂Gi+1

is exactly the Asano contraction as in
Proposition 2.2 applied to zvi and zuj . At the end of
this procedure we obtain G and the polynomial P̂G(z)
does not vanish on the complement of −Hε · Hε. It
implies that the same is true for the univariate PG(z).
By Lemma 2.1, the complement of −Hε ·Hε contains a
δ-strip of [0, 1], and this δ depends only on ε.

We note that it is necessary to have some slack ε in
Lemma 2.2. One example is counting even subgraphs,
namely the constraint f is [1, 0, 1, 0, . . . ]. Although all
zeros of Pf lie on the imaginary axis, the zeros of PG(z)
can in fact be dense on the unit circle. To see this, let G
be a cycle of length n. Then PG(z) = 1+zn as there are
only two even subgraphs. The zeros thereof are dense
on the unit circle as n varies.

Lemma 2.2 can be generalised to a set of functions
by following the proof of Lemma 2.2, if there is an ε > 0
such that all of the local polynomials are Hε-stable. A
univariate polynomial is called Hurwitz stable if all of
its zeros are in the open left half-plane. For a fixed f ,
clearly if Pf (z) is Hurwitz stable, then there is some
ε > 0 such that Pf (z) is Hε-stable. However, Hurwitz
stability is not enough to derive the same conclusion of
Lemma 2.2 for an infinite set of functions.

3 Barvinok’s algorithm
Our interest in Ruelle’s method is due to the algorithmic
approach developed by Barvinok [Bar16, Section 2]. It
roughly states that if a polynomial P (z) =

∑n
i=1 ciz

i

of degree n is zero-free in a strip containing [0, 1], then
P (1) can be (1 ± ε)-approximated using c0, . . . , ck for
some k = O

(
log n

ε

)
.

The basic idea is to truncate the Taylor expansion
of logP (z) at z = 0. Let g(z) := logP (z) and for k ≥ 0,

Tk(g)(z) :=
k∑

i=0

g(i)(0)

i!
zi,

where g(i) is the i-th derivative of g. In other words,
Tk(g)(z) is the first k+1 terms of the Taylor expansion
of g(z) at the origin. Then [Bar16, Lemma 2.2.1] states
the following.

Proposition 3.1. Let P (z) =
∑n

i=0 ciz
i be a polyno-

mial such that for some β > 1, P (z) is zero-free in the
(closed) disk of radius β centered at the origin. Then
there exists a constant Cβ such that for any 0 < ε < 1,∣∣∣∣exp(Tk(g)(1))

P (1)
− 1

∣∣∣∣ ≤ ε,

where k = Cβ log
n
ε .
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This result states that we can approximately eval-
uate P (1) using the first O

(
log n

ε

)
terms of the Taylor

expansion of logP (x) at the origin, when the polynomial
is zero-free in the disk of radius β > 1. If our polyno-
mial PG(x) is zero-free in the δ-strip of [0, 1], then we
can apply a transformation, [Bar16, Lemma 2.2.3], to
transform it into a polynomial that is zero-free in the
disk of radius > 1.

The following lemma describe the construction.
Lemma 3.1. Let 0 < δ < 1 be a constant and β =

1+
exp (− 1

δ )
2−2 exp (− 1

δ )
> 1. There exists a polynomial ϕδ(z) of

degree exp
(
O
(
1
δ

))
such that

(1) ϕδ(0) = 0 and ϕδ(1) = 1;

(2) for every z ∈ C with |z| ≤ β, the value ϕδ(z) is
within the 2δ-strip of [0, 1].

Proof. The idea to construct the polynomial ϕδ is to
start with the function log(z) (the principal logarithm)
by noting that the logarithm function maps a circle
centered at zero to an interval orthogonal to the real
axis. We can then scale and shift the function to
restrict the interval to some desired region. Finally, we
construct the polynomial ϕδ to approximate it.

To this end, we let h(z) := δ log 1
1−αz where α is

a parameter to be set. The condition h(0) = 0 is
automatically satisfied. To satisfy h(1) = 1, we set
α = 1 − exp

(
− 1

δ

)
. Then β = 1 +

exp (− 1
δ )

2−2 exp (− 1
δ )

= 1+α
2α .

Note that β < 1
α , so h(z) is well-defined over the disk of

radius β centered at the origin. It is easy to verify that
for every z ∈ C with |z| ≤ β, it holds that

−δ log 2 ≤ ℜh(z) ≤ 1 + δ log 2,

and
|ℑh(z)| ≤ π

2
· δ.

We use a polynomial, namely the Taylor expansion of
h(z) at the origin to approximate h(z). For every k ≥ 0,
the first k terms of the Taylor expansion of h at the
origin is

Tk(h)(z) = δ

k∑
i=1

αi

i
· zi.

Then for m = log (10(1+α))−log (1−α)
log 2−log (1+α) = exp

(
O
(
1
δ

))
, we

have

|h(z)− Tk(z)| =

∣∣∣∣∣δ
∞∑

i=m+1

αi

i
· zi
∣∣∣∣∣

≤ 2δ

(1− α)(m+ 1)

(
1 + α

2

)m+1

≤ δ

10
.

In particular, we have

|Tm(h)(1)− 1| = |Tm(h)(1)− h(1)| ≤ δ

10
.

Finally, we define

ϕδ(z) =
Tm(h)(z)

Tm(h)(1)

to force ϕδ(1) = 1. This finishes the construction.

Therefore, for a polynomial P (z) that is zero-free
in the δ-strip of [0, 1], we can use Proposition 3.1 to
approximately evaluate Pϕ(z) := P (ϕ δ

2
(z)), which is

zero-free in the disk of radius β at the origin for the value
β defined in Lemma 3.1. Note that P (ϕ δ

2
(1)) = P (1).

Proposition 3.2. Let P (z) be a polynomial of degree
n such that for some δ > 0, P (z) is zero-free in the
δ-strip of [0, 1]. Then there exists a constant Cδ such
that for any 0 < ε < 1,∣∣∣∣exp (Tk(logPϕ)(1))

P (1)
− 1

∣∣∣∣ ≤ ε,

where k = Cδ log
n
ε .

At last, we show the Taylor expansion Tk(logPϕ)(1)
can be computed efficiently from the coefficients of P .

Proposition 3.3. Let P (z) be a polynomial of degree
n such that for some constant δ > 0, P (z) is zero-free
in the δ-strip of [0, 1]. For every 0 ≤ k ≤ n, assume
that that we have oracle access to the first k coefficients
of P (z), we can compute

Tk(logPϕ)(1)

in time O(k2).

Since the degree of ϕ δ
2
(z) is exp

(
O
(
1
δ

))
, we can

write Pϕ(z) =
∑m

i=1 ciz
i where m = n + Cδ for some

constant Cδ depending only on δ. It is easy to compute
the coefficients ck given the coefficients of P (z) of degree
at most k in O(k) time. Let gϕ := logPϕ, we now show
how to compute Tk(gϕ) using (ci)i≤k.

Let z1, . . . , zm be the zeros of a polynomial Pϕ(z)
and for 0 ≤ k ≤ m, let pk :=

∑m
i=1 z

−k
i be the k-th

inverse power sum of the zeros of Pϕ(z).
Newton’s identities state the relation between (pk)k

and the coefficients (ci)i.

Proposition 3.4. (Newton’s Identity) For every
1 ≤ k ≤ m, it holds that

k · ck = −
k−1∑
i=0

ci · pk−i
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Newton’s identities essentially provide a way to
compute all pk consecutively using (ci)i, and vice versa.
To be specific,

p0 = m;

pk = −c−1
0 ·

(
k−1∑
i=1

pi · ck−i + k · ck

)
for 1 ≤ k ≤ m.

Therefore, it costs O(k2) time to compute pk using
above recurrence.

On the other hand, we can write Pϕ(z) =
cm
∏m

i=1(z − zi). Recall that gϕ(z) = logPϕ(z) =
log cm +

∑m
i=1 log (z − zi).

It is easy to calculate that for any i ≥ 1,

g
(i)
ϕ (0) = −(i− 1)!

m∑
j=1

z−i
j = −(i− 1)!pi.

Therefore,

Tk(gϕ)(z) := log c0 −
k∑

i=1

pi
i
zi.(3.5)

This proves Proposition 3.3.

3.1 Computing the inverse power sums Given
Proposition 3.1 and (3.5), the main task then reduces
to compute the first k inverse power sums (pi)i≤k. We
follow the method of Patel and Regts [PR17a].

We need some notations first. Let G be a family of
all graphs, and Gk be all graphs with at most k vertices.
We call a function g : G → C a graph invariant if
g(G) = g(H) whenever G ≃ H. A graph polynomial
is a graph invariant Q : G → C[z], where C[z] is the
polynomial ring over C. We call a graph invariant g(·)
additive if for any two graphs G and H, it holds that
g(G ⊔ H) = g(G) + g(H), where G ⊔ H is the graph
consisting of disjoint copies of G and H. Similarly, we
call it multiplicative if for every two graphs G and H, it
holds that g(G ⊔H) = g(G) · g(H). For graphs H and
G, we use #Ind(H,G) to denote the number of induced
subgraphs of G isomorphic to H. Then #Ind(H, ·) is a
graph invariant for a fixed graph H. By convention let
#Ind(∅, G) = 1 for any G.

Definition 3.1. Let Q(G)(z) =
∑d(G)

i=1 ai(G)zi be a
multiplicative graph polynomial of degree d(G) such that
Q(G)(0) = 1 for any G. We call Q(·) a bounded
induced graph counting polynomial (BIGCP) if there
are constants α, β ∈ N such that the following holds:

• for every graph G, there exist λH,i ∈ C such that

ai(G) =
∑

H∈Gαi

λH,i ·#Ind(H,G);(3.6)

• for every H ∈ Gαi, λH,i can be computed in time
exp (β · |V (H)|), where V (H) is the set of vertices
of H.

Patel and Regts [PR17a, Theorem 3.2] has shown
that the inverse power sums can be computed for
BIGCP in single exponential time.

Proposition 3.5. Let ∆ ∈ N, G be a graph with
maximum degree ∆ and Q(G)(·) be a BIGCP. There
is a deterministic exp (C∆k)-time algorithm, which
computes the inverse power sums (pi)i≤k of Q(G)(·),
for some constant C > 0.

To our need, we just need to verify that PG(·) from
(2.4) is a BIGCP, whenever f0 = 1.

Lemma 3.2. Let G = (V,E) be a ∆-regular graph and
f = [f0, f1, . . . , f∆] be a signature. If f0 = 1, then the
Holant polynomial PG(·) is a BIGCP with α = 2 and
β = C∆ for some constant C > 0.

Proof. Clearly PG(0) = Z0(G) = f
|V |
0 = 1. We would

like to define λH,i so that for every 1 ≤ i ≤ n,

Zi(G) =
∑

H∈G2i

λH,i ·#Ind(H,G).(3.7)

For any σ ∈ {0, 1}E , let G[σ] be the subgraph in-
duced by the set of vertices with at least 1 adjacent
edges under σ. Let Si be the set of subgraphs in-
duced by assignments of Hamming weight i, namely
Si :=

{
G[σ] : σ ∈ {0, 1}E and |σ| = i

}
. The equiva-

lence relation of graph isomorphisms induces a partition
of Si. We choose one graph from each equivalence class
and denote this family of graphs by Hi. Therefore, for
every two distinct graphs H1,H2 ∈ Hi, they are not
isomorphic. Moreover, as G[σ] has at most 2i vertices,
Hi ⊆ G2i.

For every H ∈ Hi, consider an assignment π of
signatures, where v ∈ V of degree d ≤ ∆ is assigned
[f0, f1, . . . , fd], a truncated f . Let

λH,i := Zi(H;π).
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To verify (3.7), we rewrite

Zi(G) =
∑

σ∈{0,1}E and |σ|=i

∏
v∈V

f(σ|E(v))

=
∑

H∈G2i

∑
σ∈{0,1}E

|σ|=i and G[σ]≃H

∏
v∈V

f(σ|E(v))

=
∑

H∈G2i

∑
G′ is an induced subgraph of G

G′≃H∑
σ∈{0,1}E

|σ|=i and G[σ]=G′

∏
v∈V

f(σ|E(v))

=
∑

H∈G2i

∑
G′ is an induced subgraph of G

G′≃H

Zi(G
′;π) · f |V \V (H)|

0

=
∑

H∈G2i

Zi(H;π) ·#Ind(H,G),

since Zi(G
′;π) = Zi(H;π) whenever G′ ≃ H. Thus

(3.7) holds.
Since Hi ⊆ G2i, we have that α = 2. Moreover,

H contains at most ∆ |V (H)| edges. As a consequence,
Zi(H;π) can be computed in time 2O(∆|H|). Thus, we
can take β = C∆ for some constant C > 0.

Gathering what we have seen so far, we have the
following theorem.

Theorem 3.1. Let f be a symmetric signature of arity
∆. If the local polynomial Pf (x) is Hε-stable for some
ε > 0, then there is an FPTAS for Holant(f).

Proof. Since Pf (x) is Hε-stable, f0 ̸= 0. We may thus
normalize f so that f0 = 1. By Lemma 2.2, Pf (x) being
Hε-stable implies that for any ∆-regular G = (V,E),
PG(x) is zero-free in a δ-strip containing [0, 1]. Recall
that Z(G; f) = PG(1). By Proposition 3.2, we can
(1±ε)-approximate PG(1) using exp(Tk(logPG)(x)) for
some k = O

(
log m

ε

)
, where m = |E|. In order to

compute Tk(logPG)(x), we use Proposition 3.5 and
Lemma 3.2 to compute the inverse power sums (pi) of
PG(x), and then apply Proposition 3.4 to get the first
k coefficients of PG(x). The theorem then follows from
Proposition 3.3.

Remark 3.1. Theorem 3.1 is a sufficient but not neces-
sary condition for a Holant problem to be approximable.
To see this, once again, consider the problem of counting
even subgraphs.

4 Holographic transformations
Theorem 3.1 implies an FPTAS for Holant(f) if f is
Hε-stable. However, an FPTAS may still exist even if
f is not Hε-stable. One way to extend the reach of
this approach is via Valiant’s holographic transforma-
tion [Val08], which changes f but preserves the parti-
tion function. We remark that even with holographic
transformations, this approach is not exhaustive. An
example is the problem of counting even subgraphs.

We use Holant (f | g) to denote the Holant problem
where the input is a bipartite graph H = (U, V,E).
Each vertex in U or V is assigned the signature f or g,
respectively. Call this assignment π, namely π(u) = f
for any u ∈ U and π(v) = g for any v ∈ V . Recall (1.1),
and Z(H;π) is the output of the computational problem
Holant (f | g). The signature f is considered as a row
vector (or covariant tensor), whereas the signature g is
considered as a column vector (or contravariant tensor).

Let T be an invertible 2-by-2 matrix. Let d1 =
arity(f) and d2 = arity(g). Define f ′ = f · T⊗d1 and
g′ =

(
T−1

)⊗d2
g. Let π′ be the assignment such that

π′(u) = f ′ for any u ∈ U and π′(v) = g′ for any v ∈ V .

Proposition 4.1. ([Val08]) If T ∈ C2×2 is an invert-
ible matrix, then for any bipartite graph H, Z(H;π) =
Z(H;π′), where π′ is defined above.

Therefore, an invertible holographic transformation
does not change the complexity of the Holant problem
in the bipartite setting. For a (non-bipartite) Holant
problem, we can always view the edge as a binary
equality function =2. Thus, Holant(f) is the same as
Holant (f |=2). Let O2(C) be the set of 2-by-2 orthogo-
nal matrices, namely O2(C) =

{
T ∈ C2×2 | TT T = I2

}
.

As orthogonal transformations preserve the binary
equality, the following result will become handy in the
standard setting.

Proposition 4.2. ([CLX11]) If T ∈ O2(C) is an
orthogonal matrix then for any d-regular graph G and a
signature f of arity d, Z(G; f) = Z(G; f · T⊗d).

As a particular consequence of Proposition 4.2,
under the transformation [ 0 1

1 0 ], the complexity of
Holant(f) is equivalent to Holant(f) where f =
[fd, fd−1, . . . , f0]. We will use this fact in the following
without explicitly mentioning it.

5 Second-order recurrences
The aim of this section is to study the locations of zeros
of local polynomials of signatures satisfying generalised
second-order recurrences in order to apply Theorem 3.1.
Specifically, we identify the family of signatures whose
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local polynomials are Hε-stable for some ε > 0, under
some suitable holographic transformations.

For a tuple of reals (a, b, c) ̸= (0, 0, 0), define

Fa,b,c := {[f0, f1, . . . , fd] : afk + bfk+1 + cfk+2 = 0,

∀0 ≤ k ≤ d− 2, and fk ≥ 0,∀0 ≤ k ≤ d} .

The family Fa,b,c consists of signatures with non-
negative entries satisfying second-order linear recur-
rence relation parameterized by (a, b, c). Whenever
Fa,b,c appears, we always assume that (a, b, c) ̸=
(0, 0, 0).

The following proposition states the general form
of a function satisfying a generalised second-order re-
currence.

Proposition 5.1. Let f = [f0, . . . , fd] ∈ Fa,b,c be a
signature and c ̸= 0. There are two cases:

• if b2 ̸= 4ac, then

fk = xϕk
1 + yϕk

2 ,

where ϕ1, ϕ2 are the two roots of the polynomial
cz2 + bz + a = 0 and x, y are two constants
determined by f0 and f1;

• if b2 = 4ac, then

fk = xϕk + ykϕk−1,

where ϕ is the unique root of the polynomial cz2 +
bz + a = 0 and x, y are two constants determined
by f0 and f1. In case of ϕ = 0, we follow the
convention that 0 · 0−1 = 0.

In this section, we assume that all signatures (or
their reversals) in consideration have nonzero leading
term, i.e., f0 ̸= 0 or fd ̸= 0. We will discuss the case of
f0 = fd = 0 in Section 6.

We will use F∗
a,b,c to denote the subset family of

Fa,b,c with this additional property f0 > 0. It turns
out that the behaviour of signatures in F∗

a,b,c is closely
related to the sign of the value b2 − 4ac, namely the
discriminant of the characteristic polynomial cz2+bz+a.
Therefore, our discussion is divided into three parts.

5.1 b2 − 4ac > 0 In this case, the characteristic
polynomial of signatures in F∗

a,b,c has two distinct real
roots. We first single out a special case.

Lemma 5.1. Let f be a symmetric signature of arity
d ≥ 3, where d is an odd integer, fi ≥ 0 for all
i = 0, 1, . . . , d, and f is not identically zero. If there
exist p, q, s, t ∈ R such that p2+q2 = s2+t2, ps+qt < 0,
and f = (p, q)

⊗d
+(s, t)

⊗d, then up to a non-zero scaler,
f or f is [1, 0, λ2, 0, . . . , λd−1, 0] for some λ > 1, where
f = [fd, fd−1, . . . , f0]

Proof. Since f = (p, q)
⊗d

+ (s, t)
⊗d, we have fi =

qipd−i + tisd−i. We discuss the sign of qt.
First assume qt ≥ 0. The fact f1 ≥ 0 yields

qpd−1 + tsd−1 ≥ 0.

Since d is odd, then q and t must be both non-negative.
Let t =

√
p2 + q2 − s2 ≥ 0. It follows from ps+ qt < 0

that ps < 0. We can assume without loss of generality
that p > 0, s < 0 and |p| ≥ |s| (a consequence of f0 ≥ 0).
To ease the presentation, let s′ = −s > 0. Then

ps+ qt < 0 ⇐⇒ qt < ps′

⇐⇒ q2(p2 + q2 − s′2) < p2s′2

⇐⇒ |q| < |s′| .

We then consider the requirement fd−1 ≥ 0. This is
equivalent to

qd−1p+ td−1s ≥ 0

⇐⇒ qd−1p ≥ td−1s′

⇐⇒ q2p
2

d−1 ≥ (p2 + q2 − s′2)s′
2

d−1

⇐⇒ q2(p
2

d−1 − s′
2

d−1 ) ≥ (p2 − s′2)s′
2

d−1 .

We apply |q| < |s′| and obtain

(p2 − s′2)s′
2

d−1 ≤ s′2(p
2

d−1 − s′
2

d−1 )

⇐⇒ p2

s′2
− 1 ≤ p

2
d−1

s′
2

d−1

− 1

⇐⇒ |s| ≥ |p| .

Therefore, it must hold that p = −s, q = t and we have
f = (p, q)⊗d + (−p, q)⊗d. Moreover, ps+ qt < 0 implies
that p > q. If q = t = 0, then f is identically zero,
a contradiction. Otherwise q > 0, and we can choose
λ = p

q > 1 and f is [1, 0, λ, 0, λ2, 0, . . . ] up to a non-zero
scalar.

Now we assume qt < 0, and without loss of
generality further assume that q > 0 and t < 0. Let
t = −

√
p2 + q2 − s2. We distinguish between ps ≥ 0

and ps < 0.

(i) If ps ≥ 0, then

ps < −qt =⇒ p2s2 < q2(p2 + q2 − s2)

=⇒ |s| < |q| .(5.8)

Again, f1 ≥ 0 implies that qpd−1+ tsd−1 ≥ 0. This
is equivalent to

qpd−1 ≥
√

p2 + q2 − s2 · sd−1

⇐⇒ q2p2d−2 ≥ (p2 + q2 − s2) · s2d−2

⇐⇒ q2(p2d−2 − s2d−2) ≥ s2d−2(p2 − s2).
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Since fd ≥ 0, we have |q| ≥ |t|. Together with
p2 + q2 = s2 + t2, it implies that p2 ≤ s2. Thus we
have either |p| = |s| or

q2 ≤ s2d−2(s2 − p2)

s2d−2 − p2d−2
.

If |p| = |s|, then p = s ≥ 0 and t = −q. In this
case, f = (p, q)⊗d + (p,−q)⊗d. If p = 0, then f
is identically zero, a contradiction. Thus p > 0,
and we can choose λ = q

p , and λ > 1 because
0 > ps+ qt = p2 − q2.
Otherwise, since

s2d−2 − p2d−2 = (s2 − p2)

(
d−2∑
i=0

s2ip2(d−2−i)

)
≥ s2d−4(s2 − p2),

we have q2 ≤ s2. This contradicts to (5.8).

(ii) If ps < 0, we first assume that p < 0 and s > 0.
In this case, we let p′ = −p and t′ = −t. Then
f0, f1, f2 ≥ 0 implies

sd ≥ p′d; t′sd−1 ≤ qp′d−1; t′2sd−2 ≥ q2p′d−2,

where p′, q, t′, s above are all positive. The first two
imply that t′p′ ≤ qs, and the last two imply that
t′p′ ≥ qs. Thus t′p′ = qs. This is further equivalent
to s2q2 = p2(p2+q2−s2), or (p2+q2)(p2−s2) = 0.
It implies that either p = q = 0 or p = −s. In both
cases, f is identically zero, a contradiction.
Finally, consider the case when p > 0 and s < 0.
Then f0 = pd + sd ≥ 0 implies |p| ≥ |s|. On
the other hand, fd = qd + td ≥ 0 is equivalent
to |q| ≥ |t|. However p2 + q2 = s2 + t2. Thus we
have p = −s and q = −t. This means that f is
identically zero, also a contradiction.

Let =d be the equality function of arity d, namely
the function [1, 0, . . . , 0, 1]. We call the problem
Holant (=d| [β, 1, β]) a ferromagnetic Ising model with-
out external fields, if β > 1. An FPRAS for this problem
has been given by Jerrum and Sinclair [JS93]. Then we
have the following lemma.

Lemma 5.2. Let f = [f0, f1, . . . , fd] ∈ F∗
a,b,c with

b2 − 4ac > 0. Then one of the following holds:

• Holant (f) can be solved exactly in polynomial-time;
or

• there is an invertible matrix M ∈ C2×2 such that
Holant

(
f ·M⊗d |

(
M−1

)⊗2 · (=2)
)

is a ferromag-
netic Ising model without external fields; or

• there is an orthogonal matrix M ∈ O2(C) such
that either Pf ·M⊗d(z) or Pf ·M⊗d(z) is Hε-stable for
some ε > 0, where f = [fd, fd−1, . . . , f0]; or

• f or f is [1, 0, λ2, 0, λ4, 0, . . . , λd−1, 0] for some
λ > 1 and has an odd arity d.

Proof. If c = 0, then afk + bfk+1 = 0 for all k ≤
d − 2. Thus, f0, . . . , fd−1 form a geometric sequence
with some ratio ϕ ∈ R, and f can be written as
f = x(1, ϕ)

⊗d
+ y(0, 1)

⊗d, where x, y, ϕ ∈ R. Pulling
x and y into the tensor power, there exist p, q, s, t ∈ R
and r = 1 or −1 such that f is a non-zero multiple of
(p, q)

⊗d
+ r(s, t)

⊗d.
Otherwise c ̸= 0. It follows from Proposition 5.1

that we can rewrite f = x(1, ϕ1)
⊗d

+ y(1, ϕ2)
⊗d, where

ϕ1, ϕ2 ∈ R and ϕ1 ̸= ϕ2. Since f has non-negative
weights, it implies that x, y ∈ R as well. Thus, similar to
the case above, there exist p, q, s, t ∈ R and r = 1 or −1
such that f is a non-zero multiple of (p, q)⊗d

+r(s, t)
⊗d.

The four possibilities of the lemma come from the
values these reals might take. If pt = qs, then f is
degenerate and the partition function can be computed
in polynomial time (see e.g. [CC17, Chapter 2]). Thus
we assume pt− qs ̸= 0 in the following.

First we consider the case that p2+q2 = s2+t2. We
claim that we can always write f = (p, q)⊗d + (s, t)⊗d

without loss of generality. To see this, we distinguish
between the parity of d. If d is odd, then (p, q)⊗d −
(s, t)⊗d = (p, q)⊗d + (−s,−t)⊗d. If d is even, we know
from f = (p, q)⊗d − (s, t)⊗d that f0 = pd − sd and
fd = qd − td. Therefore, f0 > 0 and fd ≥ 0 imply
p2 > s2 and q2 ≥ t2, which contradicts p2+q2 = s2+t2.

We write Holant (f) as Holant (f |=2). Let
M ′ = [ p q

s t ] be an invertible matrix due to
pt − qs ̸= 0 and M = M ′−1. It follows
from Proposition 4.1 that Holant (f |=2) is equivalent
to Holant

(
f ·M⊗d |

(
M−1

)⊗2 · (=2)
)

. We verify that
this particular Holant problem is either solvable in
polynomial-time or equivalent to a ferromagnetic Ising
model without external fields. We have

f ·M⊗d =
(
(1, 0)

⊗d
+ (0, 1)

⊗d
)
M ′⊗dM⊗d

= (1, 0)
⊗d

+ (0, 1)
⊗d

,

and(
M−1

)⊗2 · (=2) = M ′⊗2 · (=2)

=
(
p2 + q2, ps+ qt, ps+ qt, s2 + t2

)T
.

If ps + qt = 0, clearly it is solvable in polynomial-time
since the edges in every component of the instance must
be assigned with the same value in order to contribute
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a non-zero weight to the partition function. If ps +
qt > 0, we have that

(
p2 + q2

)(
s2 + t2

)
− (ps+ qt)

2
=

(pt− qs)
2
> 0, and it is a ferromagnetic Ising model

without external fields. If ps+qt < 0 and d is even, then
a further transformation

[
1 0
0 −1

]
makes the middle term

positive, and it is a ferromagnetic Ising model again.
Otherwise, Lemma 5.1 applies, and we are in the last
case of the lemma.

The remaining case is that pt ̸= qs and p2 + q2 ̸=
s2+t2. If |q| = |t|, then |p| ̸= |s| and we replace (p, q, s, t)
by (q, p, t, s). This is equivalent to work with f . So from
now on we also assume that |q| ̸= |t|. Let M ′ =

[
w 1
1 −w

]
where w ∈ R is a parameter to be set later. Then
f ·M ′⊗d is (q + pw, p− qw)

⊗d
+r(t+ sw, s− tw)

⊗d and

Pf ·M ′⊗d(z)

=(q + pw + (p− qw)z)
d
+ r(t+ sw + (s− tw)z)

d
.

Recall that r = 1 or −1, so the zeros of this polynomial
must satisfy

|q + pw + (p− qw)z| = |t+ sw + (s− tw)z| .(5.9)

We show that by choosing appropriate w the roots to
this equation are in the open left half-plane.

If p = q = 0 and s − tw ̸= 0, the roots to the
equation (5.9) must be − t+sw

s−tw . Since p2 + q2 ̸= s2 + t2,
it holds that (s, t) ̸= (0, 0). There are four cases.

• If t = 0, let w = 1. It holds that s − tw = s ̸= 0
and − t+sw

s−tw = −w < 0.

• If s = 0, let w = −1. It holds that s − tw = t ̸= 0
and − t+sw

s−tw = 1
w < 0.

• If st < 0, let w = 2s
t < 0. It holds that s − tw =

−s ̸= 0 and − t+sw
s−tw = t

s + w < 0.

• If st > 0, let w = 0. It holds that s − tw = s ̸= 0
and − t+sw

s−tw = − t
s < 0.

The case of s = t = 0 is completely analogous.
Now we can make the further assumption that

(p, q) ̸= (0, 0) and (s, t) ̸= (0, 0). Let α = −p−qw
s−tw ∈ R

be another parameter, which eventually will be set to
1 or −1. As w = αs+p

αt+q and |q| ̸= |t|, the value of
the parameter w will be determined when the sign of
α is chosen. Since p − qw = α(pt−qs)

αt+q ̸= 0, we let
z1 = − q+pw

p−qw which is well-defined. Similarly it holds
that s − tw = qs−pt

αt+q ̸= 0, and we let z2 = − t+sw
s−tw . The

equation (5.9) is equivalent to

|α| · |z − z1| = |z − z2| .(5.10)

Since |α| = 1, in order to make the roots to the equation
(5.10) in the open left half-plane, it suffices to make sure
that

z1 + z2 =

(
p2 + q2

)
−
(
s2 + t2

)
α(qs− pt)

< 0.(5.11)

Since p2 + q2 ̸= s2 + t2, we can let α = −1 if
(p2+q2)−(s2+t2)

qs−pt > 0, or let α = 1 otherwise.
We have showed that there is a matrix M ′ ∈ C2×2

such that the zeros of Pf ·M ′⊗d(z) are in the open left
half-plane. Since a polynomial has only a finite number
of zeros, there is a constant ε > 0 that Pf ·M ′⊗d(z) is
Hε-stable. It holds that M ′(M ′)

T
=
[
1+w2 0

0 1+w2

]
=(

1 + w2
)
I2 where 1 + w2 > 0 as w ∈ R. Let M =

1√
1+w2

M ′. Clearly MMT = I2 and M ∈ O2(C). Since

Pf ·M ′⊗d(z) =
(
1 + w2

)d/2
Pf ·M⊗d(z), Pf ·M⊗d(z) has the

same set of zeros as Pf ·M ′⊗d(z). So Pf ·M⊗d is also Hε-
stable for some ε > 0.

5.2 b2 − 4ac = 0 When the characteristic polynomial
of f has only one real root of multiplicity two, we show
that there always exists an orthogonal transformation
to reduce f to a function whose local polynomial is Hε-
stable.

Lemma 5.3. Let f = [f0, f1, . . . , fd] ∈ F∗
a,b,c with b2 −

4ac = 0, then there is an orthogonal matrix M ∈ O2(C)
such that Pf ·M⊗d(z) is Hε-stable for some ε > 0.

Proof. If c = 0, then b = 0 since b2 − 4ac = 0. This
cannot happen because if so f0 would be zero. If b = 0,
then a = 0 since c ̸= 0 and b2−4ac = 0. In this case, f is
of form [f0, f1, 0, . . . , 0] and we can simply pick M = I2.
Clearly Pf ·M⊗d(z) = f0 + df1z, which is Hε-stable for
some ε > 0 since f0 > 0 and f1 ≥ 0.

So now we assume that b ̸= 0. Since c ̸= 0 and
b2 − 4ac = 0, the equation cz2 + bz + a = 0 has
one real root with multiplicity two and we denote it
by ϕ. Note that ϕ = − b

2c ̸= 0 since b ̸= 0. It
follows from Proposition 5.1 that fk = xϕk+y′kϕk−1 for
0 ≤ k ≤ d and some x, y′ ∈ R. Since ϕ ̸= 0, to ease the
presentation, we let y = y′

ϕ and rewrite fk = xϕk+ykϕk.
Clearly x = f0 > 0. We can write f as

x(1, ϕ)
⊗d

+ y
d∑

k=1

(1, ϕ)
⊗(k−1) ⊗ (0, ϕ)⊗ (1, ϕ)

⊗(d−k)
.

Let M ′ =
[

1 w
−w 1

]
where w ∈ R is a parameter to be set
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later. Then

f ·M ′⊗d = x(1− ϕw, ϕ+ w)
⊗d

+ y
d∑

k=1

(1− ϕw, ϕ+ w)
⊗(k−1)

⊗ (−ϕw, ϕ)⊗ (1− ϕw, ϕ+ w)
⊗(d−k)

,

and

Pf ·M ′⊗d(z) = x(1− ϕw + (ϕ+ w)z)
d

+ yd(1− ϕw + (ϕ+ w)z)
d−1

(−ϕw + ϕz).

The zeros of this polynomial must satisfy

(1− ϕw + (ϕ+ w)z)
d−1(5.12)

(x− (x+ yd)ϕw + (xw + (x+ yd)ϕ)z) = 0.(5.13)

If ϕ + w ̸= 0 and xw + (x+ yd)ϕ ̸= 0, then the
roots of this equation must be of the form − 1−ϕw

ϕ+w

or −x−(x+yd)ϕw
xw+(x+yd)ϕ . We choose appropriate w and check

that these two roots are negative, ϕ + w ̸= 0 and
xw + (x+ yd)ϕ ̸= 0. Recall that ϕ ̸= 0 and x = f0 > 0.
We discuss various cases depending on the sign of ϕ and
x+ yd.

• If x+ yd = 0, then the roots of the equation (5.13)
are − 1−ϕw

ϕ+w and − 1
w . If ϕ < 0, let w = −2ϕ > 0

and − 1−ϕw
ϕ+w = 1+2ϕ2

ϕ < 0. If ϕ > 0, let w = 1
2ϕ > 0

and − 1−ϕw
ϕ+w = − 1

2ϕ+ 1
ϕ

< 0. Clearly ϕ+ w ̸= 0 and
xw + (x+ yd)ϕ ̸= 0 in both cases.

• If ϕ > 0 and x + yd > 0, then let w =

min
{

1
2ϕ ,

x
2(x+yd)ϕ

}
> 0. It holds that

−1− ϕw

ϕ+ w
≤ − 1

2(ϕ+ w)
< 0,

−x− (x+ yd)ϕw

xw + (x+ yd)ϕ
≤ − x

2(xw + (x+ yd)ϕ)
< 0.

Whatever w = 1
2ϕ or w = x

2(x+yd)ϕ , it is clear that
ϕ+ w ̸= 0 and xw + (x+ yd)ϕ ̸= 0.

• If ϕ > 0 and x+ yd < 0, then fd = ϕd(x+ yd) < 0.
This contradicts to fd ≥ 0.

• If ϕ < 0 and x + yd > 0, then consider fd =
ϕd(x+ yd). If d is odd, then fd < 0. Contradiction.
Thus d must be even. Then ϕd−1 < 0. Since
fd−1 = ϕd−1(x+ y(d− 1)) ≥ 0, it holds that
x + y(d− 1) ≤ 0. As x > 0, y must be negative,
and then it contradicts to x+ yd > 0.

• If ϕ < 0 and x + yd < 0, then consider fd =
ϕd(x+ yd). If d is even, then fd < 0. But fd must
be non-negative, so d must be odd. Then ϕd−1 > 0.
Since fd−1 = ϕd−1(x+ y(d− 1)) ≥ 0, it holds that
x + y(d− 1) ≥ 0. Since d > 1, we can similarly
deduce that x + y(d− 2) ≤ 0. This contradicts
that x > 0 and x+ y(d− 1) ≥ 0.

We have showed that there is a matrix M ′ ∈ C2×2

such that the zeros of Pf ·M ′⊗d(z) are in the open left
half-plane. Since a polynomial has only a finite number
of zeros, there is a constant ε > 0 that Pf ·M ′⊗d(z) is
Hε-stable. It holds that M ′M ′T =

[
1+w2 0

0 1+w2

]
=(

1 + w2
)
I2 where 1 + w2 > 0 as w ∈ R. Let M =

1√
1+w2

M ′, and clearly M ∈ O2(C). Since Pf ·M ′⊗d(z) =(
1 + w2

)d/2
Pf ·M⊗d(z), Pf ·M⊗d(z) has the same set of

zeros as Pf ·M ′⊗d(z). So Pf ·M⊗d is also Hε-stable for
some ε > 0.

5.3 b2 − 4ac < 0 When the characteristic polynomial
of f has two distinct complex roots, we show that the
local polynomial of f itself is Hε-stable.

Lemma 5.4. Let f = [f0, f1, . . . , fd] ∈ F∗
a,b,c with

b2 − 4ac < 0, then Pf (z) is Hε-stable for some ε > 0.

Proof. It holds that c ̸= 0 since otherwise b2 − 4ac ≥
0. Since c ̸= 0 and b2 − 4ac < 0, it follows from
Proposition 5.1 that fk = xϕk + yϕ

k for 0 ≤ k ≤ d,
where ϕ, ϕ are the two conjugate roots of the polynomial
cz2 + bz + a = 0 and x, y ∈ R are constants. Clearly
x + y = f0 and xϕ + yϕ = f1. Since f0 is real,
it holds that ℑ(y) = −ℑ(x). Since f1 is real and
f1 = xϕ + yϕ = (x+ y)ℜ(ϕ) + i(x− y)ℑ(ϕ), it holds
that ℜ(x) = ℜ(y). Thus y = x and fk = xϕk + xϕ

k for
0 ≤ k ≤ d. We write f = x(1, ϕ)

⊗d
+ x
(
1, ϕ
)⊗d and

Pf (z) = x(1 + ϕz)
d
+ x
(
1 + ϕz

)d
.

The zeros of Pf (z) must satisfy

|x| · |1 + ϕz|d = |x| ·
∣∣1 + ϕz

∣∣d .(5.14)

Note that ϕ ̸= 0, and x ̸= 0 since otherwise x = 0
and f would be [0, 0, . . . , 0]. So the equation (5.14) is
equivalent to∣∣∣∣z − (− 1

ϕ

)∣∣∣∣ = ∣∣∣∣z − (− 1

ϕ

)∣∣∣∣ .
Since − 1

ϕ and − 1
ϕ

are the complex conjugates of each
other, the roots of this equation and thus the zeros of
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Pf (z) must lie on the real axis. On the other hand, if
z ≥ 0

Pf (z) =
d∑

k=0

(
n

k

)
fk · zk > 0,

since f0 > 0. Thus the zeros of Pf (z) are negative reals.
Since a polynomial has only a finite number of zeros,
there is a constant ε > 0 such that Pf (x) is Hε-stable.

6 Exceptional cases
Section 5 covered all signatures in Fa,b,c unless f0 =
fd = 0. We discuss the remaining cases in this section.
We will classify all of them, but the approximation
complexity in one case is still open.

Let b ∈ R, and define Ab to be the following class{
[f0, f1, . . . , fd] | ∀0 ≤ k ≤ d− 2,

b2

4 cos2 π
d

fk + bfk+1 + fk+2 = 0, f0 = 0 and f1 > 0

}
.

Notice that Ab is a special case of Fa,b,c except that the
parameter a depends on the arity d. In fact, if f ∈ Ab,
then we can scale f so that f has the following form[

0, λ sin
π

d
, λ2 sin

2π

d
, . . . , λd−1 sin

(d− 1)π

d
, 0

]
,

for λ = − b
2 cos π

d
> 0. (Recall that b < 0.) Namely,

fi = λi sin iπ
d .

Lemma 6.1. Let f = [f0, f1, . . . , fd] ∈ Fa,b,c for some
d ≥ 3. If f0 = fd = 0, then there are three possibilities:

I. f ∈ Ab for some b < 0;

II. [f0, f1, . . . , fd] is of form [0, ∗, 0, 0, . . . , 0] or its
reversal [0, 0, . . . , 0, ∗, 0];

III. [f0, f1, . . . , fd] is of form
λ[0, 1, 0, µ, 0, µ2, . . . , 0, µ

d−2
2 , 0] for some λ, µ > 0

and even d.

Proof. We start by considering the case c = 0. Then
afk + bfk+1 = 0 for every 0 ≤ k ≤ d − 2. It is easy
to verify that f is identically 0 as f0 = fd = 0, which
belongs to type II. Thus, we may assume that c ̸= 0 and
normalise c to 1 in the following. There are two further
cases depending on whether b2 − 4a = 0.

The first case is when b2 − 4a ̸= 0. It follows
from Proposition 5.1 that f0 = x + y = 0 and fd =
xϕd

1 + yϕd
2 = 0. These two identities together imply

x
(
ϕd
1 − ϕd

2

)
= 0,

which further implies either x = y = 0 (and therefore
fk = 0 for all k) or ϕd

1 = ϕd
2. We only need to discuss

the case when ϕd
1 = ϕd

2 and x ̸= 0. There are two
possibilities.

(1) If ϕ1

ϕ2
∈ R, then ϕ1 = −ϕ2 as b2 ̸= 4a. It implies

that d is even. This is type III.

(2) Otherwise, ϕ1

ϕ2
̸∈ R. In this case, b2 − 4a < 0

and ϕ1 and ϕ2 are conjugate of each other. By
swapping ϕ1 and ϕ2 if necessary, we may assume
that 0 < arg ϕ1 < π. Then there exists some
integer 0 < t < d, t ̸= d/2, so that arg ϕ1 = tπ

d

and ϕ1

ϕ2
= e

2tπ
d i ̸∈ R. Since a > b2/4 ≥ 0,

|ϕ1| = |ϕ2| =
√
a, and

fk = x
(
ϕk
1 − ϕk

2

)
= 2x · a k

2

(
sin

tkπ

d

)
i.

Recall that we have the further requirement fk ≥ 0
for every 0 ≤ k ≤ d. For k = 1, as 0 < t < d,
sin tπ

d > 0, and thus x must lie on the negative
imaginary axis. Then, it must be that sin tkπ

d ≥ 0
for all 0 ≤ k ≤ d. If t > 1, then taking k =
⌊d
t ⌋+ 1 ≤ d implies a contradiction. Thus t = 1.

The assumption 0 < arg ϕ1 < π implies that
cos π

d = −b
2
√
a
> 0. Thus, b < 0 and a = b2

4 cos2 π
d

.
This verifies that f is of type I.

At last we turn to the case that b2 − 4a = 0. It
follows from Proposition 5.1 that fk = xϕk + ykϕk−1

where ϕ = −b/2. Then f0 = 0 means that x = 0, and
fd = 0 means that yϕd−1 = 0. Thus either y = 0 or
ϕ = 0, and any of the two cases implies that f is of type
II.

Next we show that type II and type III signatures
are equivalent to approximately counting perfect match-
ings in general graphs. Denote by ExactOned the
function [0, 1, 0, . . . , 0] of arity d, and by EO the (infi-
nite) set {ExactOned | d ∈ N+}. Then Holant(EO) is
the problem of counting perfect matchings in a graph,
denoted #PM. (There is only one function for each de-
gree/arity. So the mapping from vertices to functions is
obvious for the infinite set EO.)

For type III signatures, since multiplying by a con-
stant does not change the complexity, we may assume
that λ =

√
µ. Then f = [0, λ, 0, λ3, 0, . . . , λd−1, 0] with

λ > 0. We will assume λ < 1. This is because that
if λ = 1, then the problem is tractable exactly, (see,
for example, [CGW16]) and if λ > 1, then taking its
reversal makes λ < 1. We adopt the approximation-
preserving reduction ≤AP from [DGGJ04], and use ≤G
to denote gadget reductions, which is a special form of
≤AP.
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Figure 1: A gadget for type III signatures, where
squares are [0, 1, 0], and circles are [0, 1, 0, 1, 0]. All
edges are [1, 0, µ].

Lemma 6.2. Let d ≥ 4 be an even integer, and 0 < λ <
1. If f = [0, λ, 0, λ3, 0, . . . , λd−1, 0] of arity d, then

Holant(ExactOne4) ≤AP Holant(f).

Proof. Applying a holographic transformation by T =
[ 1 0
0 λ ], we have that

Holant(f) ≡ Holant
(
f ·
(
T−1

)⊗d | T⊗2· =2

)
≡ Holant ([0, 1, 0, 1, 0, . . . , 1, 0] | [1, 0, µ]) ,

where 0 < µ = λ2 < 1. Thus Holant(f) is to count
the number of odd subgraphs with edge weight µ in a
d-regular graph. Notice that doing a self-loop simply re-
duces the degree of a vertex by 2, while leaving the con-
straint on the vertex still requires “odd-degrees”. Thus,
with enough self-loops, we may simulate a binary dise-
quality [0, 1, 0] as well as an arity-4 signature [0, 1, 0, 1, 0]
on the left hand side of the bipartite Holant formulation.

Consider the gadget in Figure 1. Then, it is easy
to verify that the effective binary function is (2µ2 +
2µ3)[1, 0, 1] on the left hand side. Finally, with [1, 0, 1]
on the left, we can form a path of length n, and the
resulting binary function is [1, 0, µn] on the right. More
formally, we have the following chain of reductions:

Holant ([0, 1, 0, 1, 0, . . . , 1, 0] | [1, 0, µ])
≥G Holant ([0, 1, 0], [0, 1, 0, 1, 0] | [1, 0, µ])
≥G Holant ([1, 0, 1], [0, 1, 0, 1, 0] | [1, 0, µ])
≥G Holant ([0, 1, 0, 1, 0] | [1, 0, µn]) .

The last problem is counting odd subgraphs with µn

edge weights in 4-regular graphs and µ < 1. Now,
one moment’s reflection realises that odd subgraphs
with exponentially small edge weights is approximately
perfect matchings, which finishes the reduction.

Similar ideas can also handle the last case in
Lemma 5.2, after taking its reversal and renaming λ.

Lemma 6.3. Let d ≥ 3 be an odd integer, and 0 < λ <
1. If f = [0, λ, 0, λ3, 0, . . . , λd] of arity d, then

Holant(ExactOne3) ≤AP Holant(f).

u u′ v′ v... ...

Figure 2: A gadget for weighted equalities. There are
n1 edges between u and u′, and n2 edges between u′ and
v′.

Proof. As in the proof of Lemma 6.2, we do the same
holographic transformation by T = [ 1 0

0 λ ]:

Holant(f) ≡ Holant ([0, 1, 0, 1, 0, . . . , 1] | [1, 0, µ]) ,

where 0 < µ = λ2 < 1. Once again, with sufficiently
many self-loops, we get [0, 1, 0, 1] and [0, 1] on the left
hand side. Connecting [0, 1] back to [0, 1, 0, 1] through
[1, 0, µ] yields µ[1, 0, 1] on the left. Thus, similar to the
proof of Lemma 6.2, we can simulate [1, 0, µn] on the
right. More formally, we have the following chain of
reductions:

Holant ([0, 1, 0, 1, 0, . . . , 1] | [1, 0, µ])
≥G Holant ([0, 1], [0, 1, 0, 1] | [1, 0, µ])
≥G Holant ([1, 0, 1], [0, 1, 0, 1] | [1, 0, µ])
≥G Holant ([0, 1, 0, 1] | [1, 0, µn])

≥AP Holant(ExactOne3).

On the other hand, we have the following lemma.

Lemma 6.4. Let d ≥ 3 be an integer and 0 < λ < 1.
Let f = [0, λ, 0, λ3, 0, . . . ] be a symmetric signature of
arity d. Then

Holant(f) ≤AP #PM.

Proof. First, by the same holographic transformations
as in the proofs of Lemma 6.2 and Lemma 6.3,

Holant(f) ≡ Holant ([0, 1, 0, 1, 0, . . . ] | [1, 0, µ]) ,

where µ = λ2 > 0.
Consider the gadget in Figure 2, where all vertices

are the “exact one” function, namely [0, 1, 0, . . . , 0]. It is
easy to see that this gadget is equivalent to a weighted
equality [1, 0, n2

n1
]. Thus we can use it to arbitrarily

closely approximate [1, 0, µ] by tuning n1 and n2 for
any µ > 0.

In addition, consider the gadget in Figure 3, where,
once again, all vertices are [0, 1, 0, 0]. The resulting
signature is [0, 1, 0, 1].

A simple calculation verifies that a sequence of d
signatures [0, 1, 0, 1] connected together, as in Figure 4,
yields a signature [0, 1, 0, . . . , 1, 0] of arity d + 2 if d is
odd, or a signature [1, 0, 1, 0, . . . , 1] of arity d + 2 if d
is even. In the even case, to get [0, 1, 0, 1, . . . , 0], we
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Figure 3: A gadget to create [0, 1, 0, 1].

…

Figure 4: A gadget to create [1, 0, 1, 0, . . . , 1] or
[0, 1, 0, 1, . . . , 0].

simply connect one of its dangling edges with [0, 1, 0].
Formally, we have the following sequence of reductions:

Holant ([0, 1, 0, 1, 0, . . . ] | [1, 0, µ])
≤G Holant({[0, 1, 0, 1, 0, . . . ], [1, 0, µ]})
≤AP #PM.

Lemma 6.2, Lemma 6.3, and Lemma 6.4 together
imply the following:

Holant(ExactOne4) ≤AP Holant(f) ≤AP #PM,
(6.15)

if d is even,

Holant(ExactOne3) ≤AP Holant(f) ≤AP #PM,
(6.16)

if d is odd,

where f = [0, λ, 0, λ3, 0, . . . ] for some 0 < λ < 1
has arity d ≥ 3. Note that Holant(ExactOne3) or
Holant(ExactOne4) is just an alias of counting perfect
matchings in 3- or 4-regular graphs, which is equivalent
to #PM in approximation. This is a folklore fact, and
is shown in the next couple of lemmas.

Lemma 6.5. Holant(ExactOne3) ≤AP
Holant(ExactOne4).

Proof. Note that a self-loop on [0, 1, 0, 0, 0] gives [0, 1, 0],
and connecting it back to [0, 1, 0, 0, 0] yields [1, 0, 0].
Thus,

Holant([0, 1, 0, 0, 0], [1, 0, 0]) ≤G Holant([0, 1, 0, 0, 0]).

Given an instance G (namely a 3-regular graph) of
Holant([0, 1, 0, 0]), consider a disjoint union of G and
its copy G′. We add a new vertex u for each pair
v and v′, and connect u to both v and v′. Now all
original vertices in G and G′ have degrees exactly 4. Put

Figure 5: A gadget to create ExactOned.

[0, 1, 0, 0, 0] on all these vertices, and [1, 0, 0] on all new
vertices. It is easy to see that the partition function of
this new instance is the square of the number of perfect
matchings of G. Thus, we have the following reduction
chain:

Holant([0, 1, 0, 0]) ≤AP Holant([0, 1, 0, 0, 0], [1, 0, 0])

≤G Holant([0, 1, 0, 0, 0]).

However, approximate counting perfect matchings
in 3-regular graphs is as hard as that in general graphs.

Lemma 6.6. #PM ≤AP Holant(ExactOne3).

Proof. Consider the gadget in Figure 5.
Notice that if we put [0, 1, 0, 0] on the two degree

three vertices, and [0, 1, 0] on the middle vertex, the
resulting signature is [0, 1, 0, 0, 0]. More generally, if we
replace one of the degree three vertex by ExactOned,
then the resulting signature is ExactOned+1. Namely,
using this gadget, we can simulate the whole set of EO,
and

#PM ≤G Holant([0, 1, 0, 0], [0, 1, 0]).

Moreover, a self-loop on [0, 1, 0, 0] gives [0, 1], and
connecting back to it gives [1, 0, 0]. By using the same
squaring trick in Lemma 6.5, we can use [1, 0, 0] as [1, 0].
Thus, we have the following reduction chain:

#PM ≤G Holant([0, 1, 0, 0], [0, 1, 0])

≤G Holant([0, 1, 0, 0], [1, 0])

≤AP Holant([0, 1, 0, 0], [1, 0, 0])

≤G Holant([0, 1, 0, 0]).

Holant problems defined by type II signatures
are counting perfect matchings in d-regular graphs.
Clearly, by doing sufficiently many self-loops, ei-
ther Holant(ExactOne3) ≤AP Holant(ExactOned)
or Holant(ExactOne4) ≤AP Holant(ExactOned), de-
pending on the parity of d. Thus, combining this fact
with Lemma 6.5, Lemma 6.6, (6.15) and (6.16), we have
the following result.

Lemma 6.7. Let f = [0, 1, 0, λ2, 0, . . . ] for some 0 ≤
λ < 1. Then

Holant(f) ≡AP #PM.

Notice that in Lemma 6.7 we manipulate the form
a little bit so that it cover type II and type III in
Lemma 6.1, as well as the last case in Lemma 5.2.
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7 Proof of main theorems
We are now ready to assemble all the ingredients to
prove our main theorems. We restate Theorem 1.1 for
convenience.

Theorem 7.1. Let f = [f0, f1, . . . , fd] be a symmetric
constraint function of arity d ≥ 3 satisfying generalised
second-order recurrences, and fi ≥ 0 for all 0 ≤ i ≤
d. There is a fully polynomial-time (deterministic or
randomised) approximation algorithm for Holant(f),
unless, up to a non-zero factor, f or its reversal is in
one of the following form:

• [0, λ sin π
d , λ

2 sin 2π
d , . . . , λi sin iπ

d , . . . , 0] for some
λ > 0;

• [0, 1, 0, λ, 0, . . . , 0, λ
d−2
2 , 0] if d is even, or

[0, 1, 0, λ, 0, . . . , 0, λ
d−1
2 ] if d is odd, for some

0 ≤ λ < 1.

Moreover, in the latter case, approximating Holant(f) is
equivalent to approximately counting perfect matchings
in general graphs.

Proof. We apply Lemma 5.2, Lemma 5.3 and
Lemma 5.4. Then one of followings must happen

1. f0 = fd = 0; or

2. f or f is [1, 0, λ2, 0, λ4, 0, . . . ] for some λ > 1 and
has an odd arity; or

3. Holant (f) can be solved exactly in polynomial-
time; or

4. there is an invertible matrix M ∈ C2×2 such that
Holant

(
f ·M⊗d |

(
M−1

)⊗2 · (=2)
)

is a ferromag-
netic two-spin system; or

5. there is an orthogonal matrix M ∈ O2(C) such
that either Pf ·M⊗d(z) or Pf ·M⊗d(z) is Hε-stable for
some ε > 0, where f is the reversal of f .

We are done in Case (3), as well as in Case (5)
by Proposition 4.2 and Theorem 3.1. In Case (4), we
invoke the FPRAS by Jerrum and Sinclair [JS93]. In
Case (1) and Case (2), we are in the desired form of the
theorem by Lemma 6.1. (In case µ > 1 in Lemma 6.1,
we can take its reversal so that µ < 1, and if µ = 1,
then exact counting is tractable [CGW16].) Finally,
the approximation complexity of [0, 1, 0, λ, 0, λ2, 0, . . . ]
signatures is handled in Lemma 6.7.

Remark 7.1. It is worth noticing that our algorithm
applies beyond regular graphs. In fact, for any finite
family of signatures F , we can define Holant (F) as

the problem of computing the partition function on a
graph G, where each vertex v of G is associated with
a function fv ∈ F . It is straightforward to adapt the
algorithm described in the proof of Theorem 1.1 for one
to solve Holant (F)1. It is not hard to see the adapta-
tion provides an efficient approximation algorithm for
Holant (F) as long as there exists an orthogonal matrix
M ∈ O2(C) and ε > 0 such that Pf ·M⊗d is Hε-stable for
every f ∈ F , where d is the arity of f . For example, we
can let F be the family of signatures for matchings up
to arity d, or the family of signatures for edge covers up
to arity d. Therefore, our algorithm recovers a num-
ber of previously known deterministic approximation
algorithms for special cases of Holant problems, such
as counting matchings [BGK+07, PR17a] and counting
edge covers in bounded degree graphs [LLL14].

On the other hand, even for the same tuple (a, b, c),
signatures in Fa,b,c may require different M to be Hε-
stable. It is not clear how to obtain an algorithm in such
cases.

We deduce Theorem 1.2 from Theorem 1.1 by
noting that all ternary signatures satisfy generalised
second-order recurrence relations. Therefore, we only
need to deal with the case where f = [0, a, b, 0] for some
a, b > 0.

We design an FPRAS for Holant (f) using the ma-
chinery called “winding” developed in [McQ13, HLZ16].
We sketch the construction here without getting into
too much technical details, which is out of the scope
of the current paper. We break every edge into two
half edges, and then simulate a Markov chain whose
state space consists of all consistent edge assignments
and assignments with at most two inconsistencies. It
has been shown by McQuillan [McQ13] that the Markov
chain mixes rapidly as long as the signature f is wind-
able. It is then straightforward to use the algebraic
characterization of windable functions in [HLZ16] to
verify that every function of the form [0, a, b, 0] with
non-negative a, b is windable. At last, it is trivial to
check that, using the notations in [McQ13], the signa-
ture [0, a, b, 0] is strictly terraced when both a, b > 0.
This fact implies that the ratio between the total weight
of nearly consistent assignments and that of consistent
assignments can be bounded by a polynomial in the
size of the instance. Therefore, we obtain an efficient
Gibbs sampler for Holant (f), which can be turned into

1The main adaptation is to show that Zi(G) is still a BIGCP
when more than one constraint function are present. Since F
is finite, we can therefore view functions in F as colors and
enumerate vertex colored induced subgraphs instead of ordinary
induced subgraphs in the proof of Lemma 3.2. Similar technique
already appreared in [PR17a]
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an FPRAS to compute the partition function via self-
reduction [JVV86].

The remaining open case in Theorem 1.1 is when
f ∈ Ab of arity d ≥ 3. Numerical evidences suggest
that these signatures are windable, via the criteria
in [HLZ16]. We conjecture that this is indeed the case,
which would imply FPRAS for computing the partition
functions of type I signatures, since this class is “strictly
terraced” in the language of [McQ13].
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