Journal of Computer and System Sciences 80 (2014) 217-236

Contents lists available at SciVerse ScienceDirect

JOURNAL or
COMPUTER
g"° SYSTEM

Journal of Computer and System Sciences

www.elsevier.com/locate/jcss

The complexity of complex weighted Boolean #CSP @CmsMark

Jin-Yi Cai?, Pinyan Lu®*, Mingji Xia°©

@ Computer Sciences Department, University of Wisconsin, Madison, WI 53706, USA
b Microsoft Research Asia, Beijing, 100080, PR China
€ Max-Planck-Institut fiir Informatik, 66123 Saarbriicken, Germany

ARTICLE INFO ABSTRACT
Article history: We prove a complexity dichotomy theorem for the most general form of Boolean #CSP
Received 16 July 2012 where every constraint function takes values in the field of complex numbers C. We

Received in revised form 5 June 2013
Accepted 11 July 2013
Available online 24 July 2013

first give a non-trivial tractable class of Boolean #CSP which was inspired by holographic
reductions. The tractability crucially depends on algebraic cancelations which are absent
for non-negative numbers. We then completely characterize all the tractable Boolean #CSP
with complex-valued constraints and show that we have found all the tractable ones,

Keywords:

CSP and every remaining problem is #P-hard. We also improve our result by proving the
Counting problems same dichotomy theorem holds for Boolean #CSP with maximum degree 3 (every variable
Dichotomy theorem appears at most three times). The concept of Congruity and Semi-congruity provides a

key insight and plays a decisive role in both the tractability and hardness proofs. We also
introduce local holographic reductions as a technique in hardness proofs.
© 2013 Elsevier Inc. All rights reserved.

1. Introduction

The complexity of counting problems is a fascinating subject. Valiant defined the class #P to capture most of these
counting problems [2]. Beyond the complexity of individual problems, there has been a great deal of interest in proving
complexity dichotomy theorems which state that for a wide class of counting problems, every problem in the class is either
computable in polynomial time (tractable) or #P-hard [3-9].

In this paper we address the following type of counting problems, called Boolean #CSP [10,11]. Let .# be a set of
functions, where each F € .% is a function F : {0, 1} — C, mapping Boolean variables to the complex numbers. The #CSP
problem #CSP(%) is defined as follows: The input is a finite set of constraints on Boolean variables xi, x3, ..., x, of the
form F(x;,,Xi,,...,X;), where F € #. The output is

> TTF®i %o xiy).

X1,X2,....Xn€{0,1}

If each F takes values 0, 1, then this counts the number of assignments “satisfying” all the Boolean constraints. In general,
functions F € # can take arbitrary values. Complexity dichotomy theorems have been obtained for many cases [3,6,12,13,8].
Dyer, Goldberg and Jerrum [9] showed that if all functions in .%# take non-negative values, then the counting problem is
solvable in polynomial time in precisely the following two cases, and is #P-hard in all other cases: (1) every function in .#
is of a product type (a product of unary functions, binary equality functions and binary disequality functions); and (2) every
function in .% is a pure affine function (a constant on an affine subspace and zero on other inputs).

* Corresponding author,
E-mail addresses: jyc@cs.wisc.edu (J.-Y. Cai), pinyanl@microsoft.com (P. Lu), xmjljx@gmail.com (M. Xia).

0022-0000/$ - see front matter © 2013 Elsevier Inc. All rights reserved.
http://dx.doi.org/10.1016/j.jcss.2013.07.003

http://dx.doi.org/10.1016/j.jcss.2013.07.003
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/jcss
mailto:jyc@cs.wisc.edu
mailto:pinyanl@microsoft.com
mailto:xmjljx@gmail.com
http://dx.doi.org/10.1016/j.jcss.2013.07.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jcss.2013.07.003&domain=pdf

218 J.-Y. Cai et al. / Journal of Computer and System Sciences 80 (2014) 217-236

In this paper we consider problems #CSP(.%) where functions F € .% take arbitrary complex values. The presence of both
positive and negative values, and more generally, complex numbers, offers the opportunity for interesting and more general
cancelations, which could lead to efficient algorithms. It turns out that this is indeed the case. We discover a non-trivial
class of tractable #CSP(.%#) problems, where algebraic cancelation is crucial.

We came to this class of tractable #CSP(.%) from a novel direction, that of Holant problems and holographic reductions,
first proposed by Valiant [14-17]. As this subject is still relatively new, we give a brief description of it. A signature grid
2 =(G,.%) is a tuple, where G = (V, E) is a graph, and each v € V(G) is assigned a function F, € .%. A Boolean assignment
o for every e € E gives an evaluation [[,.y Fv(o|g)), where E(v) denotes the incident edges of v. The counting problem
on an input instance £2 is to compute

Holant(2) = Z l_[Fy(Oolgw))-

o veV

For example, consider the PERFECT MATCHING problem on G. This problem corresponds to attaching the ExAcT-ONE function
at every vertex of G, and the sum in Holant(§2) over all 0-1 edge assignments counts the number of perfect matchings. If
we used the AT-MosT-ONE function at every vertex, then we are counting all (not necessarily perfect) matchings.

There is a simple relation between #CSP and Holant problems. We can represent an instance of a #CSP problem by
a bipartite graph G where the left-hand side (LHS) is labeled by variables and the right-hand side (RHS) is labeled by
constraints. We define a signature grid £2 on G by assigning an EQUALITY function to every variable node on LHS (and
every constraint node on RHS has the given constraint function). Then Holant(§2) is exactly the same as the #CSP counting
problem. In effect, the EQuALITY function on each variable node forces the incident edges take the same value; this effec-
tively reduces edge assignments in Holant(£2) to vertex assignments on LHS in the #CSP problem. Thus #CSP problems
are precisely the special case of Holant problems on bipartite graphs where every vertex on LHS is assigned an EQUALITY
function.

On the other hand, Holant problems can be considered as #CSP problems where every variable appears twice. Note that
being syntactically more restrictive in Holant problems makes it more challenging to prove dichotomy theorems, since some
techniques, such as many “gadget constructions”, take us out of the class. By the same token, to prove #P-hardness for #CSP
problems where each variable appears at most 3 times is more difficult.

In the study of Holant problems, we discovered that the following three families of functions are tractable. (We list each
function as a vector of function values ordered according to the lexicographic order of the corresponding inputs. We call
such a vector its truth table. In the following, we denote i = /—1.)

F1 = {A([1,01% +i"0, 11%)};
Fy = {11, 0% 4171, 1199);
F3 = (A1, 01%% + i1, —i1%%)},

where L €C,k=1,2,...,and r=0,1,2, 3.

We can show that Holant(£2) for any 2 = (G, %7 U .%, U.%3) is computable in polynomial time. They are all related to
each other by holographic reductions.

We note that complex-valued functions appear naturally. The special case where r=1, k=2 and A = (1+i)~! in .%3 is
noteworthy. In this case we get a real-valued function H(0,0) = H(0,1) = H(1,0) =1 and H(1, 1) = —1. The matrix form of
this function is the Hadamard matrix H = (} _11). If we take r=0, any k and A =1 in .%; we get the EQUALITY function on
k bits. If 2 = (G, %) with .% consists of exactly the function H and all EQuALITY functions, then Holant(£2) is computing
the partition function for graph homomorphism Zy(G). This problem essentially counts the number of induced subgraphs
with an odd number of edges. The complexity of Zy(G) had been open for some time [6] and was independently proved
to be tractable in a magnificent paper by Goldberg et al. [7] and by the conference version of this paper [1] (see also [18])
as a consequence that Holant(£2) for any 2 = (G, % U.%, U.%3) is computable in polynomial time. In [7] they proved a
dichotomy theorem for all real-valued partition functions of graph homomorphism. We note that even though some mem-
bers of .77 U %, U %3 are real-valued functions, holographic reductions connect them all together and inextricably lead
to complex-valued functions. We prefer to investigate the complexity of #CSP type problems in the complex domain C
whenever possible, not only for esthetic reasons, but also because it is in the complex domain C the intrinsic relationship
is revealed via eigenvalues and eigenvectors. This is the reason underlying why the real-valued function H appears in the
family .%3 whose definition uses complex numbers. Our investigation of complex-valued constraint functions is also moti-
vated by partition functions in quantum physics. In classical statistical physics, the partition function is always real-valued.
However, in a generic quantum system for which complex numbers are the right language, the partition function is in gen-
eral complex-valued. In particular, if the physics model is over a discrete graph and is non-orientable, then the edge weights
defining the partition function of a spin system is a symmetric complex matrix.

After the discovery of this tractable family .7 U .%, U %3, the question naturally arises as to whether there are other
kinds of non-trivial cancelations which lead to efficient algorithms. Our initial guess was surely there are other tractable
Boolean #CSP(.%) problems, given our surreptitious discovery of .%; U.%, U %3 as a by-product of holographic reductions.
The surprising result is that there are none.

J.-Y. Cai et al. / Journal of Computer and System Sciences 80 (2014) 217-236 219

This is our main result. We prove a complexity dichotomy theorem for complex-valued Boolean #CSP. The tractability
proof for the symmetric function family .77 U .%, U .%3 also proves the tractability for its natural generalization to asym-
metric functions. The dichotomy theorem says that a Boolean #CSP is tractable iff either all its constraint functions .% are
of a certain product type, or all are from this generalized family. (See Theorem 3.1.) Bulatov et al. independently proved
a dichotomy theorem for all Boolean #CSP with real-valued constraint functions [19]. Our dichotomy theorem generalizes
both dichotomy theorems in [9] and [19].

Because we have to rule out all other manners of fortuitous cancelations similar to Theorem 4.1 this part of the proof
is more difficult. We isolate a property we call Congruity and Semi-congruity, which provides a key insight and plays a
decisive role in both the tractability and hardness proofs.

Our second main theorem, Theorem 3.2, gives a refinement of the first, by restricting the maximum occurrence of each
variable to 3 times. This part of the proof is more demanding. The starting point is the dichotomy theorem just proved
for Boolean #CSP, Theorem 3.1. We introduce a new technique called local holographic reductions. We use this technique
together with the method called polynomial interpolation [2,20,4] to prove our second main theorem. The use of holographic
reductions implicitly or explicitly seems crucial to this part of the proof.

To avoid unnecessary complications with models of computation for C, we will restrict all numbers used to algebraic
numbers, although it is possible to add some fixed finite set of transcendental numbers. For simplicity we will still denote
it by C.

1.1. Related works and further development

Some results in this paper have been reported at a conference [1]. Independently from our work, a dichotomy for real
weighted #CSP was obtained in [19], where each constraint function can take any real values. A dichotomy for complex
weighted graph homomorphism was proved in [21]. In both cases, interesting cancelation occurs and brings new tractable
problems.

Great progress was made recently for the complexity of counting CSP over general domain. Bulatov proved a sweeping
dichotomy theorem for unweighted #CSP [8]. An alternative proof was given by Dyer and Richerby [22]. The dichotomy was
extended to non-negative weight [23] and finally to complex weight [24]. In terms of the logical scope of the dichotomy, the
final result covers the dichotomy in this paper as a special case.! However, the dichotomy in [24] is not effective while the
dichotomy in this paper is very explicit. The dichotomy for maximum degree 3 complex weighted #CSP is not subsumed by
these further developments.

After the conference version of the current paper, many new results were obtained based on the dichotomy result in this
paper. In [25], a dichotomy for Weighted Boolean #CSP Mod k, for any integer k, was proved. When k is an odd prime, the
final result is algebraically exactly the same as the dichotomy in this paper when the imaginary unit i = «/—1 is interpreted
as a fourth primitive root of unity. Crucially based on the dichotomy in this paper, a number of dichotomy theorems were
proved in Boolean Holant framework [26-28].

2. Definitions

Let .Z be a set of functions, where each F € .% is a function F : {0, 1} — C, mapping Boolean variables to C. The #CSP
problem #CSP(.%) is defined as follows: The input is a finite set of constraints on Boolean variables x1, x>, ..., x, of the
form F(x;,,Xi,,...,%;), where F € .%. The output is

> TTF®i %o xiy).

X1,X2,...,Xn€{0,1}

Definition 2.1. For any positive integer k, we use #R;-CSP(.%#) to denote all #CSP(.%#) problems where every variable appears
in at most k constraints.

A symmetric function F on Boolean variables can be expressed by [fo, f1, ..., fi], where f; is the value of F on inputs
of weight j. Let = denote the equality function of arity k, that is, (=¢) =[1,0,...,0, 1], where there are k — 1 zeros in the

bracket. We also use Ag, Aj to denote [1,0] and [0, 1] respectively. A binary function F is also expressed by the matrix
F(0,0) F(0,1)
[F(l,O) F(l,l)]'
Suppose F is a function on input variables x1,x3,...,x,. F*=¢ denotes the function F*=C(x1,...,Xs_1,Xs41,...,Xk) =
F(X1,...,X5—1,C,Xs+1, ..., Xg), and F*=* denotes the function F*=*(Xq,...,Xs—1,Xst1,...,Xk) = sz F(x1,...,Xc). A func-

tion of arity k can be expressed by its truth table of length 2.

1 While the new #CSP dichotomy on an arbitrary domain D [24] does imply logically a complexity dichotomy on the Boolean domain, it is not clear how
to derive our main theorem in this paper, especially the specific dichotomy criterion, from this general theorem.

220 J.-Y. Cai et al. / Journal of Computer and System Sciences 80 (2014) 217-236

The underlying relation of F is given by Rr = {X € {0, 1% | F(X) # 0}. A relation R C {0, 1}¥ is affine means it is the
affine subspace composed of solutions of a system of linear equations; equivalently, if a, b, c € R, then the bit-wise XOR
a®b®ceR[11].If Rf is affine, we say F has affine support. We also view relations as functions from {0, 1}* to {0, 1}.

Because a global constant factor does not affect the complexity of a counting problem, we may regard a function F and
c - F as the same function, where c is a non-zero constant in C, and we sometimes omit such a factor.

Now we also define another related counting framework called Holant. Let .%# be a set of functions. A signature grid is a
tuple 2 = (G, %,), where G = (V, E) is an undirected graph, and 7 : V — .% labels each v € V with a function f, € .%
where the arity of f, equals the degree of v. f, takes the incident edges of v as input variables. And if the function is not
symmetric then we also assume a 1-1 association is given between the incident edges and the input variables. The Holant
problem on instance £2 is to compute

Holant, = Z nfv(UIE(v)),

o0:E—~{0,1} veV

a sum over all 0-1 edge assignments, of the products of the function evaluations at each vertex. Given a set of functions .%,
we define the problem Holant(.%):

e Input: A signature grid 2 = (G, %, 7);
e Output: Holantg;.

We can also define a bipartite Holant problem. Given two sets of functions .% and ¥, we define a counting problem
Holant(¥ | %#):

e Input: A signature grid 2 = (G, ¥, %,m), where G = (Vq, V,, E) is a bipartite graph, and = maps V¢ to ¢ and maps
Vy to .7,
e Output: Holantg;.

We also use #¥ | % to denote Holant(¥ |).

By the definitions, it can be seen that #CSP(%) is exactly Holant({=1,=2,=3,...} | %), #R3-CSP(%) is just
Holant({=1, =2, =3} | %), and the Holant problem Holant(.%#) corresponds to the computation of the value of Holant({=3} |
F).

The following is Valiant’s Holant Theorem [14].

Theorem 2.1 (Holant Theorem). #% | .7 is equivalent to #4 | %, where 7 = (M®"V() f | f e 7} and G = (gM~1)®"@ |
g €9}, for any 2 x 2 non-singular matrix M. Here we write f € % as a column vector of dimension 20 and write g € 4 as a
row vector of dimension 29/(8),

3. Results and proof outline

We define two classes of functions, for which the #CSP problems are tractable.

Let X denote the (k+ 1)-dimensional column vector (x1, X2, ..., X, 1)T over the Boolean field Z;. Suppose A is a Boolean
matrix. x4x denotes the affine relation on inputs x1, X2, ..., X;, whose value is 1 if AX is the zero vector, and 0 if AX is not
the zero vector.

Definition 3.1. We denote by <7 the set of all functions which have the form yyx - il10+2(X)+-+la(X) “\where i = /=T,
each Lj is a 0-1 indicator function of the form (o, X), where «; is a (k 4+ 1)-dimensional vector over Z, and the dot
product (-,-) is computed over Z;.

Recall that we regard a function and any non-zero constant multiple of it as the same function. Thus each function in ./
can have an arbitrary constant multiple A € C. The additions among L;(X) are the usual addition in Z. It can be computed
mod 4, but not mod 2.

Definition 3.2. Define

2 ={la1,b11® [a2,b2]1 ® - -- ® [ax, b1 | a;, b; € C}

to be the set of functions that can be expressed as a tensor product of unary functions.

A function in & on k variables is the product of k unary functions applied to its k variables respectively. (Here & stands
for degenerate. A binary function is in & iff its corresponding matrix is singular.)

J.-Y. Cai et al. / Journal of Computer and System Sciences 80 (2014) 217-236 221

Definition 3.3. We denote by &2 the set of all functions which can be expressed as a product of unary functions, binary
equality functions ([1, 0, 1]) and binary disequality functions ([0, 1, 0]) (on not necessarily disjoint subsets of variables).

We note that & is a superset of 2.

Theorem 3.1. Suppose .% is a class of functions mapping Boolean inputs to complex numbers. If % C & or % C &2, then #CSP(.%)
is computable in polynomial time. Otherwise, #CSP(.%) is #P-hard.

Our theorem applies to both finite and infinite .. When % is infinite, for the tractable case, the polynomial time
algorithm has input size including the description of the constraint functions used in the instance; for the #P-hard case,
a finite subset .#' C % exists such that #CSP(.%#") is #P-hard.

Proof outline: The polynomial time algorithm for #CSP(Z?) is easy. Section 4 gives a polynomial time algorithm for
#CSP(«7). In dichotomy theorems for unweighted and non-negative weighted Boolean #CSP problems, the tractable part
is relatively obvious. In our dichotomy theorem, we have a more interesting tractable part because of cancelations. In
Lemma 5.6, we prove that #CSP({F}) is #P-hard unless F has affine support. This structure is essential in the proof of
Lemma 5.7 and Lemma 5.8, the two key lemmas of the hardness reduction. The common strategy of Lemma 5.7 and
Lemma 5.8 is to reduce the arity of a given function. In Lemma 5.7, we prove that given a function F not in </, we can
simulate (in polynomial time) a unary function F’ ¢ ./; in Lemma 5.8, we prove that given a function G not in &, we can
simulate (in polynomial time) a binary or a ternary function G’ ¢ &. Then we prove that #CSP({F’, G'}) is #P-hard. The
starting point of the hardness result is Lemma 5.2, which says that if .# contains only one binary symmetric function and
is not in &/ U &, then the #CSP problem is #P-hard. To complete the proof, we show that we can always combine functions
F’ and G’ to realize a binary symmetric function which is not in </ U £,
We also prove a stronger dichotomy theorem that the hardness result holds even for #R3-CSP(.%).

Theorem 3.2.If # ¢ o/ and F ¢ P, then #R3-CSP(F) is #P-hard.

Note that if we further restrict each variable to occur at most twice, then this dichotomy statement is not true; there
are more tractable cases. For example, if every variable occurs exactly twice, then this is the Holant problem Holant(.%), for
which any set of binary functions is tractable under this restriction [18,27,28].

We also remark that the expressibility as Ail1(X)+L2(X)++Ia(X) 5 equivalent to an expression of the form 1'i2™X) where
Q is a homogeneous quadratic polynomial over Z with the additional requirement that every cross term xsx; has an even
coefficient, where s # t. To see this we observe that each L;(X) as an integer sum mod 2 can be replaced by (Lj(X))2 as an
integer sum mod 4, since L(X) =0, 1 (mod 2) iff (L(X))2 =0, 1 (mod 4). After this, all cross terms have an even coefficient,
and i* can be replaced by i, Conversely, we can express Q mod 4 as a sum of squares of affine forms of X, using the
extra condition that all cross terms have an even coefficient.

4. Tractable cases

We first show that #CSP(4?) is tractable. Each constraint function in an instance of #CSP(4?) is a product of unary
functions, binary equality functions and binary disequality functions. We may replace each function by its factors as separate
constraints. For the new instance of the #CSP, group variables into connected components depending on whether they are
connected by binary functions. Within each connected component, start at any variable with a truth assignment O or 1,
following any edge labeled by a binary equality or disequality function, there is at most one consistent extension of this
assignment to all variables within this connected component. If the extension is inconsistent (along some edge), then the
value is 0; otherwise we can easily calculate the value by multiplying the functional evaluations. Thus in each connected
component there are at most two assignments with non-zero product values, and these can be easily computed. The value
of the problem is the product of its values on each connected component. Hence, #CSP(4?) is computable in polynomial
time.

Now we analyze #CSP(<7). Firstly, we show how to get rid of the factor yx.

AX = 0 is not infeasible. Then in polynomial time, we can construct another function H(y1, ya, ..., ys) = iltMO+TLO+-+L) ¢ o7
suchthat0<s<kand}’, . F=3>, ., ,H

Proof. In polynomial time we can solve the linear system AX = 0 over Z;, and decide if it is feasible. Suppose AX =0 is
feasible. W.l.o.g., we can assume that yq, y2,..., ys is a set of independent variables over Z, and the others are dependent

222 J.-Y. Cai et al. / Journal of Computer and System Sciences 80 (2014) 217-236

variables, where 0 < s <k. Each dependent variable can be expressed by an affine form of y1, y2,..., ys. For any L;(X), we
can substitute all the dependent variables and get an affine form of y1, y3,..., ys, which we denote by L}(Y). So we have
Z XAXill(X)+L2(X)+~~~+Ln(X) — Z LA HL V)4t Ly (V) O
X1,X2,..., Xk Y1.¥2,--Ys

The following lemma gives a key property of the function il1(X)+L2(X)+++La(X) This property plays an important role in
both the tractability proof and the hardness proof.

Lemma4.2. Let F(x1, X3, ..., x) = il OFLX++LX) Exqactly one of the following two statements holds:
1. (Congruity) There exists a constant ¢ € {1, —1, 1, —i} such that for all x,x3, ..., X, € {0, 1} we have F¥1=1JF¥x1=0(x; x3, ...,
Xk) =c;
2. (Semi-congruity) There exists a constant ¢ € {1, i} and an affine subspace S of T = {(x2, X3, ..., Xk) | Xj € Zy} withdim S =k —2,
such that F¥1=1/F¥1=0(x; x3,...,x) =con S, and FX1=1 JFX1=0(x5 x3,...,x)=—conT —S.

Proof. If for every 1< j < n, the coefficient of x; is zero in L;(X), then Fx1=1/Fx1=0 s 3 constant 1. Otherwise, w.l.o.g.
suppose the coefficients for x; are non-zero in exactly the first m affine linear forms L;(X). Obviously, the other L;(X)’s
cancel in the ratio F¥1=1/Fx1=0,

For any assignment to Xp, X3, ..., Xk, consider the two assignments (0, x2,X3,...,X,) and (1,x2,x3,...,X,). For each

1<j<m Li(1,x,%3,...,%) = 1 — Lj(0,X2,X3,...,%). Therefore the ratio F¥1=1/F\1=0 =]_['}1:] 1720 (0.x2.X3,.0%0) —
m :

i’"(—l)zi:1 LjOx2.%3,%0) Here m is independent of the assignment on x;, x3, ..., X;. Since the base is —1 now, the sum

can be evaluated as a sum mod 2. Therefore there is an affine linear form o (X) = Zﬁzz ogXxy + agy1 (mod 2), such that
FX1:1/FX1:O — im(_l)a(x).

If all oy =0, for 2 < £ <k, then this ratio is a constant and we are in the case of Congruity. If oy = 1, for some 2 < £ <k,
then we have Semi-congruity. O

Theorem 4.1. #CSP(/) is polynomial time computable.

Proof. We first observe that .o/ is closed under multiplication. Therefore given an instance of #CSP(<), the value of the
output can be expressed as the summation on a single function F = yaxil1®)+20++l(X) ¢ o7 We also note that if
F e, sois F*=C,
In each step of our algorithm, we reduce the number of variables by at least one and still get a summation of this form.
If the linear system AX =0 over Z; is infeasible, the function is a totally zero function and we just output 0. If AX =0
is feasible (including possibly vacuous) then by Lemma 4.1 we can remove the factor ysx and possibly decrease the number
of variables at the same time.
Now we assume it has the form F = il1X)+L2(X)++ln(X) e apply Lemma 4.2 to remove x1. There are three cases.
Case 1: We have Congruity in Lemma 4.2. Then F*1=1/F*=0 s 3 constant c, and

Z F=(+c¢)- Z Fx1=0,
B Xk

So we get a new summation , ..
Case 2: We have Semi-congruity in Lemma 4.2, and ¢ = 1. Then on the affine subspace S, the ratio F¥1=1/Fx1=0 — 1,

X F*1=0 and have removed a variable x;.

and on the complementary subspace T — S the ratio F¥1=!/F¥=0 — _1_ For all (x,X3,...,X) € T — S, the terms cancel,
F¥'=1(xy,x3, ..., %) + FX1=%(x5, x3,...,x) =0. On S, the terms are equal. It follows that
X1,X2,.00s Xk X2,X3,..., Xk

Note that xsF*1=0 is also a function in <7, so we get a new summation of this form and have removed a variable x;.
Case 3: We have Semi-congruity in Lemma 4.2, and ¢ =i. Then for all (x2,x3,...,x,) in the affine subspace S, we have
F1=1/Fx1=0 —j and in T — S, we have F¥1=1/Fx*1=0 — _j 1t follows that

Yo F=Y 4Py -0,
X1,X2,5.00y Xk S T-S

Now we make a crucial observation. The ratio of 1+i and 1 —i is exactly i. As a result we can rewrite the two sums as

follows:
S F=3 iy PO SRy),
S

X1,X2,..0, Xk T-S

J.-Y. Cai et al. / Journal of Computer and System Sciences 80 (2014) 217-236 223

where L(X’), on X' = (x2,X3,...,X, 1), is a 0-1 indicator function which takes the value 1 on S and 0 on T — S. Thus we
can combine the two sums and get

Yo F=—i)- Y (FT0 X)),

Note that F¥1=0 . iL(X) is also a function in <. So we get a new summation of this form and have removed a variable x;.
After at most k steps we can eliminate all the variables and obtain the value of the initial summation. Both k and n
are bounded by input size. In each iteration, we either resolve a linear system AX = 0 or compute a linear equation by
Lemma 4.2 representing the affine subspace S, both of which can be done in polynomial time. After each iteration, the
formula inside the summation gets at most one more factor it or Xs, so the whole algorithm is in polynomial time. O

5. Hardness

In this section, we prove the hardness part of Theorem 3.1, following the outline in Section 3.

Hardness of problems is proved by reductions. In a reduction, we simulate the functions in the original problem by
constructing gadgets, polynomial interpolation, or holographic reductions. Let F € % be a function of arity d, 1 < j<d
and c € {0, 1}. By fixing the jth input as c¢, we get a function of arity d — 1 which is denoted by F*=¢. We also define
FXi=* = FX/=0 4 FX=1 35 a function of arity d — 1. In #CSP problems, if we have F € .%, we can simply get FX=* if x; does
not occur in any other constraint. We can simulate Ag and A; by the pinning lemma in [9], so we can get F*/=¢ using F
and A.. We summarize these as the following lemma.

Lemma 5.1. If F € .Z, then #CSP(F U {Aq, A1, FXi=0, FXi=1 FXi=*}) <1 #CSP(%).
5.1. One binary function

The starting point of our hardness proof is the following lemma.

Lemma5.2.If[a, b, c] ¢ & U P2, then #CSP({[a, b, c]}) is #P-hard. Explicitly, all binary tractable functions [a, b, c] are from &/ U &,
and have one of the following forms: [x, 0, y], [0, x, 0], [x2, Xy, yz], x[1, &i, 1] or x[1, &1, —1], where x, y € C.

This lemma says that, if restricted to one single symmetric binary function, our Theorem 3.1 holds. This lemma can
also be derived from the general complex weighted Graph Homomorphism problem, for which Cai, Chen and Lu [21] have
proved a complete dichotomy theorem, a subsequent result to this.

We give a proof of Lemma 5.2. We first note that every one of the five listed exceptional cases is in &/ U &2, and it can
be checked directly that all binary symmetric functions in .2/ U &2 take one of these five forms.

In several places of this proof, a reduction method called polynomial interpolation [2,20,4] is used. We first show a
simple special case using polynomial interpolation method as applied here. The general method is similar, which involves
setting up and then solving a system of linear equations to get the answer of the original problem. The solvability of these
linear systems here in this proof is always by the fact that it is a Vandermonde system. (See Section 6, in particular the
proof of Lemma 6.1 for more variations on this theme.)

Consider #CSP(.%), where .# contains some function F =[1,a, 1]. Suppose we want to simulate a function H =[1, b, 1],
that is, to reduce #CSP(.# U {H}) to #CSP(.%). Given an instance I of #CSP(%# U {H}), where there are n constraints
given by H, we construct instances I; of #CSP(.%), by replacing each constraint H(x;,,x;,) in I by j many constraints
F(xi,, xi,). We use #(I) to denote the value of the #CSP problem instance I. Each occurrence of H takes an input of the
form (0, 0), (0, 1), (1,0), (1, 1). We can write the sum defining #(I) as a sum over all assignments stratified according to the
number of (1,0) or (0, 1) assigned at the n occurrences of H. Let w; denote the sum over all assignments with exactly i of
n occurrences of H assigned (1, 0) or (0, 1) (the other n —i are assigned (0, 0) or (1, 1).) Then the value #(I) can be written
as the summation #(I) = Z?:o w;bi. Meanwhile, we have #(Ij) = Z?:o wial. We let j=1,...,n+1 to get a system of
linear equations about w;, whose coefficient matrix is a Vandermonde matrix (a¥), i, j=1,...,n+ 1. If a is non-zero and
not a root of unity, this is a non-singular matrix, and we can solve for all w;, which gives us #(I). This is essentially how
every reduction by polynomial interpolation in this section will be done.

Our starting point here is the following fact. This lemma is a special case of the dichotomy theorem in [6].

Lemma 5.3. Let [a, b, c] be a symmetric binary function, where a, b, c are non-negative real numbers. Then #CSP({[a, b, c}) is #P-hard
unless [a, b, c] is of one of the following three forms: [a, 0, c]; [0, b, O]; or [x2, xy, y2].

Now we consider complex-valued functions. First we prove two simple lemmas.

Lemma 5.4. For any symmetric binary function [0, b, c], where bc # 0, #CSP({[0, b, c]}) is #P-hard.

224 J.-Y. Cai et al. / Journal of Computer and System Sciences 80 (2014) 217-236

Proof. Since b # 0, we can normalize it and assume b = 1. So we have [0, 1, c]. First suppose c is a root of unity. Let ck=1.
We can realize [0, 1k, c"] =[0, 1, 1] by k copies of [0, 1, c]. This problem is the counting problem for vertex covers, hence it
is #P-hard. Now suppose c is not a root of unity. We can realize all [0, 1, x] by polynomial interpolation. In particular, we
can realize [0, 1, 1], which is #P-hard. O

Lemma 5.5. For any symmetric binary function [1, b, c], where bc 0 and ¢ # b?, there exist two unary functions [1,x] and [1, y]
such that #CSP({[1, b, c], [1, x], [1, y]1}) is #P-hard.

Proof. We use F to denote the binary function [1,b,c], and U to denote a unary function [1, x]. Then we can realize a
binary function G by

G(x1,x2) = Y F(x1,x3)F(x3, X2)U (x3).

X3

It can be computed that G = [1 4 b2x, b(1 + ¢x), b? + c2x]. If ¢ # —b?, we can choose x = —biz, and get G = [0, %, b4b’2‘2 .
Since ¢ £ 4b?, by Lemma 5.4, we know the problem is #P-hard. So we proved that if c # —b?, there exists a unary function
[1, x] such that #CSP({[1, b, c], [1, x]}) is #P-hard.

Now suppose ¢ = —b%. We choose x = —b%, and get G =[—1, 3b, —b%]. Now for this new symmetric binary function, we
can again perform the construction above using a unary function [1, y]. Since b 0 and b® # (3b)2, we can prove that the
problem is #P-hard. O

Now we prove our main lemma in this section, namely Lemma 5.2: If[a, b, c] ¢ &/ U &2, then #CSP({[a, b, c]}) is #P-hard.

Proof of Lemma 5.2. There are several cases. If a =0, we know bc # 0, otherwise it is in one of the five exceptional cases. So
by Lemma 5.4, #CSP({[a, b, c]}) is #P-hard. The case c =0 is symmetric. Since [a, b, c] ¢ &7 U &2, we know b # 0. Therefore
we will assume in the following that abc # 0, and by normalizing, we can assume a = 1.

There are three cases for proving the complexity of #CSP({[1, b, c]}), with bc # 0.

1. ¢ is not a root of unity.
Connect two inputs of =3 by [1,b,c], we can get the function [1,c], and realize any function of the form [1, x] by
polynomial interpolation. So by Lemma 5.5, we know that #CSP({[a, b, c]}) is #P-hard.
2. c is a root of unity, b is not a root of unity.
Suppose ck = 1. We can realize [1, b¥, c*] =[1, b¥, 1] by k copies of [1, b, c]. Because b is not a root of unity, we can use
it to realize [1,2, 1] (actually any [1, x, 1]) by interpolation. This is already #P-hard, by Lemma 5.3.
3. Both b and c are roots of unity.
We can realize G = [; 'Z]Z =[1+4b2%, b+ bc,b? + 2.
(a)b=—-1.G=[2,-1—c,14c2].
Since [1,b,c]=[1,—-1,c] ¢ &/ U &, we know c # £1. If ¢ = +i, we get G =[2,—1 F i, 0], which is #P-hard by
Lemma 5.4 (or rather a symmetric version of Lemma 5.4, flipping 0 and 1). If ¢ ¢ {41, £i}, then there are no zero

entries in G. Since ¢ is a root of unity, and ¢ # +1, we have |1 + c%| # 2. In particular 145‘52 is not a root of unity.

Normalizing we have [1, ==, 1“562]. So #CSP({G}) is #P-hard by case 1.
(b) b=—c. G=[1+c2,—c—c?,2c2].
Since [1,b,c] =1, —c,c]l ¢ &/ U 22, we know c # +1. If ¢ = +i, we get G =[0,1 F i, —2], which is #P-hard by

Lemma 5.4. If ¢ ¢ {1 £ i}, then there are no zero entries in G. Normalizing we get [1, %‘Cf, %], For ¢ a root of
unity, the equation |1 + Cl2| =2 would imply that ¢ = 1. As ¢ % %1, we have |1+ c?| 5 |2c?|. In particular 12+C§2 is

not a root of unity. It follows from case 1 that #CSP({G}) is #P-hard.

() c=1. G=[1+b22b,1+b%].
Since [1,b,c]=[1,b. 1] ¢ &/ U 2, we know b ¢ {+1,i}. So 1+b*#0, and |35 | = 755 # 1. 50 25 is not a
root of unity. Therefore the problem is #P-hard by case 2.

(d) b —1, b+ #0, c # 1. Moreover we are given ¢ # b® since [1,b,c] ¢ o/ U 2.
By identifying one input of [1, b, c] and the input of [1, 1], we get [1 + b, b + c]. Neither of the two entries is 0.
We claim, because |b| =|c| =1, |1+ b|=|b+c| if and only if c =1 or c = b2. Since we assumed c # 1 and ¢ # b2,

\‘?chll #1 and we can interpolate all unary functions with [1 4 b, b + c]. Therefore #CSP([1, b, c]) is #P-hard.

One direction is obvious. In_the other direction, because |1 +b|=|b+c|, (1+b)(1 +b) = (b + ¢)(b +¢). Expanding
this equation, we get b+ b = cb + ¢b, i.e, Reb =Rec/b. If b =e'® and ¢ = e'#, then cosa = cos(8 — «), hence
B — o =+a mod 2. It follows that c =1 or b2, O

J.-Y. Cai et al. / Journal of Computer and System Sciences 80 (2014) 217-236 225

5.2. Non-affine functions

The following lemma generalizes Lemma 11 in [9] to complex weights. However the original proof in [9] does not work
for complex weights, due to possible cancelations.

Lemma 5.6. If R is not affine, then #CSP({F}) is #P-hard.

Proof. We prove by induction on the arity of the function F.

All functions of arity one have affine support. The conclusion holds trivially for these functions.

We first consider a function F of arity two. Suppose F does not have affine support. This implies that exactly one of its
four values is 0. F can be denoted by the matrix

a b|_ [F(0,00 F(0,1)
c d| |F1,00 F1,1 |’
then in particular det(F) # 0. By taking two copies of F sharing a free variable z in the appropriate order (x,z) and (z, y),

we can realize the binary function H(x,y) =Y, F(x,2)F(z, y), whose matrix form is H = FFT = [Ziiﬁ; ‘;gigf] This H is

a symmetric binary function, which can also be denoted by [a? + b%, ac + bd, c? + d?]. We can apply Lemma 5.2 to H.
Because F is non-singular, so is the matrix for H. Because exactly one entry of F is 0, ac + bd # 0 and H is not of the
form [x, 0, y]. Because either a® 4+ b% 0 or c? +d* # 0, H is not of the form [0, x, 0]. So the only remaining possibility
for He &/ U 22 is that H is of the form x[1, =i, 1] or x[1,+1, —1]. By symmetry, we only need to consider the cases
a=0 and bcd #0, or b=0 and acd # 0. If a =0, we can assume b =1 by dehomogenizing, and then the function H
is [1,d,c? +d?]. If H is of the form x[1,+i, 1], we have d = +i and c = ++4/2. Then we can realize another symmetric
binary function by H’'(x, y) = F(x, y)F(y,x). So H = [a%, bc,d?] = [0, £+/2, —1]. #CSP({H’}) is #P-hard by Lemma 5.2. If
H is of the form x[1,+1,—1], we have d = +1 and ¢ = ++/2i. Then H’ = [a?, bc,d?] = [0, ++/2i, 1] and #CSP({H'}) is
#P-hard by Lemma 5.2 again. So we have completed the a =0 case. If b =0, we can assume a =1 and the function
H is [1,c,¢® +d?]. If H is of the form x[1,+i, 1], we have ¢ = +i and d = ++/2. Then we can realize another binary

function F’ by F'(x,y) = F(x, y)F(x, y). In matrix notation F' = [“2 bZ] = ! 0]. Next we can simulate H’ from F’ as

c2 d? -12
H =FFT= [_11 *5]]. In symmetric notation H = [1, —1,5]. By Lemma 5.2 #CSP({H’}) is #P-hard. Finally if H is of the
form x[1,+1, —1], we have ¢ = 1 and d = ++/2i. Then by the same construction, F’ = [} 702] and H' = [} ;] which in

symmetric notation is H' = [1, 1, 5]. So again #CSP({H'}) is #P-hard. We have completed the proof for the case where the
function F is of arity two.

Inductively we assume the lemma has been proved for functions with arity <k, for some k > 3, and now assume the
function F has arity k. Since R is not affine, there exist a,b,c € Rr such that d=a® b & c ¢ Rr. We only need to prove
that we can use F to simulate a function of smaller arity that does not have affine support.

Divide the index set [k] ={1,...,k} of input variables of F into 4 subsets according to the values of a, b, ¢ as follows:

I={jlaj=bj#c;}, J={jlaj=cj#bj},

K:{j|bj:cj¢aj}, and L:{j|aj:bj:cj}.
Since aj, b; and c; take Boolean values, {I, J, K, L} is a partition of [k]. For a Boolean variable a, we use a to denote its
negation. We also remark that, if j,I €I, then either (a;, b, c)) = (a;j,bj,cj) or (aj, b? Cj). A similar statement holds for J,

K and L.
Now we have the following four cases, and for each case, we prove our result.

e L is not empty. There exists j such that aj =b; =c;.
We pin the jth input of F to be aj, and get a function F*=%. Note that dj =a; = b; = c;. This function F*=% does
not have affine support.
Now we may assume L=¢ and [k]=1U JUK.

e There are indices [# j, such that (a;, b;, ¢)) = (aj, bj, cj).
W.lo.g., we assume | =1 and j = 2. Define a function of arity k — 1 by H(x1, X3, ..., xx) = F(x1, X1, X3, ..., X,). H can be
simulated by F, and by the property that a,b,c € Rr and yet d ¢ Rr, H does not have affine support.

o There are indices I # j, such that (a;, by, ¢)) = (aj, bj, Cj).
Clearly both I and j belong to the same set I or J or K. W.lLo.g., we assume [=1 €I and j =2 € I. The proofs for
J and K are the same. Then we have a = («,&,d’), b = («,&,b’), c = (@, «,c’), and d = (&, «a,d’), where o € Z,,
a,b,c e Z’ﬁ_z, andd =d' @b ®c e Zg_z. Assume for a contradiction that all functions of the forms FX=Ff and F*=*
have affine support.
Consider F*'=%, whose underlying relation Rpx=« is affine. Because a,b € Rf, (&, d’), (&, b’) € Rpy=«. The summation
of (&,d), (@,b), (a,c), (a,d) is the zero vector in Zg’l, so (a,c’) € Rpxy=e iff (a,d’) € Rpxy=«. This implies that
(o, a,c’) € Rp iff (o, ,d’) € Rp.

226 J.-Y. Cai et al. / Journal of Computer and System Sciences 80 (2014) 217-236

Next consider F*2=%, Because c € Rr and d ¢ Rf, we have (&, ¢') € Rpxn=c, and (&, d) ¢ Rpxn=c. We just proved, Rf gives
the same value to (o, «,), (o, a,d’). If Rg gives 1, then («, '), («,d’) € Rpx;=«, but this is impossible for the affine
relation Rpx=«. So we must have («, «,c’) ¢ Rr and (o, «,d’) ¢ R.

Similarly, we can prove that both (&, &, a’) and (&, &,b’) ¢ Rr. More precisely, first consider F*2=% Because a,b € RF,
(a,d’), (a,b’) € Rpxy=a. Having an affine support, Rpx,- gives the same value to (&,a’) and (@, b’). Thus Rf gives the
same value to (@, @, a’) and (&, &, b’).

Next consider F¥1=%_ It also has an affine support. Since ¢ € Rr and d ¢ Rf, we have (a,c’) € Rpx=a and (o, d)¢ Rpxi=a.
If (@,a,d), (@, a,b’) e Ry, then (&,a’), (@, b') € Rpy=a. This is impossible for an affine relation Rpx -z. Thus it follows
that (&, @,a’) ¢ Rr and (&, @, b’) ¢ Rf.

To summarize we have all («,a,c), (a,a,d), (@, a,d), (@, &,b’) ¢ RE.

Finally we consider F¥*'=*, and calculate as follows:

F=*(a&,a')=F(a)+ F(@,&,d’) = F(a) #0,
F=*(a,b’)=F(b) + F(a,a,b’) = F(b) #0,
F=*(a,) =F(c) + F(a,a,c’) = F(c) #0,
F=*(a,d')=F(d) + F(a,a,d)=F(d) =

This is a contradiction with the assumption that Rpx=« is affine.

e If there are more than one element in sets I or in J or in K, it is included in the previous two cases. The remaining
case is that the sizes of I, J, K are all no more than 1 and L is empty. Because k > 2, the sizes of I, J, K are exactly 1,
and so k=3. W.lo.g, let ={1},] ={2} and K ={3}.

A moment reflection shows that we can write a = (p,q,7), b= (p,q,r), c=(p,q,r), d=(p,q,7), where p,q,r € Z,.
First we consider F¥1=P, which has an affine support, by arity. Let u = (p, q, 1), and suppose u € Rg. Then (q,r) € Rpx=».
Because a,b € Rf, then (q,7) and (q,r) both belong to Rgx=p. Then being affine, (§,7) € Rpy=p. Let v =(p, q,7), then
V € Rf.

Next we consider Rgxu=¢. By a,c € Rr, we get (p,7r), (P,r) € Rpx;=¢. By assumption u € Rf, then (p,r) € Rpx=q¢. By
Rpx=¢ being affine, we get (p,7) € Rgx=¢. Let w = (p, q,T), then w € Rf.

Now a,v,w € Rf. This gives us (p,q), (P, q), (P,q) € Rpx=i. Since Ry is affine, (p,q) € Rpx;=+. This means that
d=(p,q,r) € Rg, which is a contradiction.

We conclude that in fact u ¢ Rf.

By tracing the above steps, under the new condition u ¢ R, we get v ¢ Rr, and also w ¢ Rf.

Finally we consider F*3=". By b, c € Rf, we get (p, (), (p,q) € Rpx3=r. By u ¢ RF, we have (p, q) ¢ Rpxs=r. By Rpx=r being
affine, we get (P, Q) ¢ Rpx=r. ie., (D,q,1) ¢ Rf. . 3

We have now accounted for all 8 points of the form (p,q,7), where each bit 8 = B or B. Exactly three of them
a,b,c belong to Rr and the other five points do not. It can be directly verified that Rpx=+ has exactly three points
(q,7),(q,7),(q,r), but not (q,7), which is a contradiction to Rpx=+ being affine. This contradiction completes our
proof. O

5.3. Reducing arity

Now we come to the two key lemmas for the hardness proof. Both proofs inductively reduce the arity of a function.
Suppose .F ¢ o and F ¢ P. Let F ¢ & and G ¢ &, where F,G € #. (It is possible that G = F.) From F and G, we
recursively simulate functions with smaller arities, keeping the property of being not in ./ and not in & respectively. After
the two lemmas we handle the base case of the induction.

Lemma5.7. If F ¢ <, then either #CSP({F}) is #P-hard, or we can simulate a unary function H ¢ <7, that is, there is a reduction from
#CSP({F, H}) to #CSP({F}).

Proof. We prove by induction on the arity of the function F. If F has arity one, then we are done since F itself is the unary
function we want.

Inductively we assume the lemma has been proved for functions with arity less than k, for some k > 2. Now let F have
arity k. In the following proof, for each case, we construct some functions that can be simulated in #CSP({F}), but have an
arity less than k, and then assume they are in &/ (otherwise, it is proved by induction). Finally we prove that either the
problem is #P-hard, or get a unary function H ¢ .o/ or reach a contradiction.

Since the constant function 0 is in <7, F has a non-empty support Rr. We first assume R is not the whole space Z’;. By
Lemma 5.6, either #CSP({F}) is #P-hard, or R is affine. Suppose Rr = xax, and X1, X2, ...,Xs (0 <s < k) are free variables
of AX =0. The function F*s+1=%X+2=%--Xx=* can be simulated by F and has an arity less than k. Thus by our assumption
FXst1=H8:Xs12=%, =% ¢ o7 Then obviously F = yax F*s+1=*X+2=%--%=* ¢ o7, This is a contradiction to the assumption that
F¢do.

J.-Y. Cai et al. / Journal of Computer and System Sciences 80 (2014) 217-236 227

So we may assume Rp = Zg. By our assumption both F¥2=0, FX»=1 ¢ o7, we can apply Lemma 4.2 to these two functions.
Accordingly we have the following 3 cases.

1. Both FX2=0 and F*=1 have Congruity. We will denote the function F¥1=%X=b by F® [et ¢; and c; € Z, be the two
constants for the Congruity of F*2=0 and F*2=1, Thus F19/F%(x3,...,x,) =c; and F11/F0l(x3, ..., x) = 3.

(a)

(b)

(0)

C1 =10C3.

This means F¥1=1/F*1=0 s 3 constant ¢ in {1, —1, i, —i}. Suppose ¢ =i". Then F = (i*1)" F¥=0, Since F¥**=0 is in &/
by arity, this shows that F is also in /. A contradiction.

C1 = —Cy.

We will use the notation [c(X)] to denote the 0-1 indicator function for an affine linear form «(X) over Z,. For
any input X, it takes value 0 € Z if «(X) =0 in Z;, and it takes value 1€ Z if «(X) =1 in Z,.

Since ¢1 € {1, —1, i, —i}, there exists an r such that i" = c;/i. Then we claim that

F= (i[xﬂ)r . @xl+xl+el+x] | pxi=0

To verify this, first suppose x; = 0, then the RHS is i#*] . Fx1=0 — Fx1=0_ Now let x; = 1, then the RHS is i" -
jl-xal+3kal . px1=0 — ¢ (—1)x2] p¥1=0_ Thjs is ¢; FO° = F19, if x, = 0. For x, = 1, the expression is —c; FO1 = ¢, F01 =
F11. Since F¥1=0 has arity less than k, F*1=0 € o7. But then the claim implies that F € .« as well. A contradiction.

c1=icy Or 1 = —icy.

Assign an arbitrary assignment for xs, ..., x;. Let P be the resulting function on x1, x». In matrix form, where the

rows are indexed by x; =0, 1 and columns are indexed by x, =0, 1, we have P = [iiczu sz], for some u, v taking
values in {#1, +i}. Let Q (x1,x2) = P3(0,x2)P(x1, x2), realizable by pinning. In matrix form, Q = [iil;4u4 CV;:] =
2 2

[izcz Clz]. Here we used the fact that the values of P are powers of i. Now Q*2=* is a unary function [2, (1 £ i)c3]

which has unequal non-zero norms 2 # |[(1 £i)c2| = +/2 and hence not in 7.

2. One of F*»=0 and F*»=! has Congruity and the other has Semi-congruity. Without loss of generality, assume F*2=0 has
Congruity and F*2=! has Semi-congruity. The other case is similar.

By Congruity, there is a constant ¢ € {1, —1,i, —i}, such that F10/F%x3 ... x) =cq for all x3,...,% € Z’é‘z. By
Semi-congruity there is a constant c; € {1, —1,i, —i}, and a (k — 3)-dimensional affine linear subspace S C Zg’z,
represented by an affine linear form a/(xs,...,x) =0, such that on S, F'1/F%(x3,...,x) =c; and on Z&2 -5,
FU/FO(x3, ..., x¢) = —cp. We note that to have Semi-congruity, it must be the case that k > 3, and one of the co-
efficients of x3,..., X, in «(x3, ..., X,) must be non-zero. W.l.o.g. let it be the coefficient of xs.

Fix an arbitrary assignment to X4, ..., X, (if k =3 this step is vacuous), this gives a function P(x1, x, x3). By changing
the constant term in o and c; to —c; if necessary we may assume x3 = 0 gives a point with o (x3,...,x;) =0.

Now we will use a special notation to represent P(xq, X2, X3).

z €12
X ax
P y cy
w —Cow

This symbol is to suggest a cube and is to be read as follows: The left (right) 4 entries are function values with x; =0
(x1 = 1); the top (bottom) 4 entries are function values with x =0 (xo = 1); finally the inner (outer) 4 entries are
values with x3 =0 (x3 =1).

Let

Q (x1,%2,x3) = P(x1,x2,x3)(P(0, xz,X3))3. This corresponds to taking the 3rd power of each of left 4 nodes

(x, y,z, w) and multiplying to itself and the node to its right. We get

1l C1
— 1
Q | C2

1 —C2
since x* = y* = z* = w* = 1. Next let R(x1, x2, x3) = Q (x1, X2, X3)(Q (x1, X2, 0))3. This gives

1 . 1

1

R= 14 ’
1 -1

: 4 _ 4 _ —0_ 11 =1 _
since ¢} =c5 = 1. Then R% _[11]‘ RM=1 =

}_11] It follows that R¥1=* =[22], and R¥=*%=* = [4,2]. It has

1= 20

unequal non-zero norms, hence this unary function R¥1=**2=* ¢ o7,

3. Both FX2=0 and F*=! have Semi-congruity. Let F1°/F% =¢; on a(x3,...,x) =0 and —c; on a(xs,...,x) = 1. Sim-
ilarly F1'/F%' =¢; on B(x3,...,xy) =0 and —cy on B(x3,...,x) = 1. Here cq,c; € {1,—1,i,—i}, and «, B are two
non-trivial affine linear forms.

228 J.-Y. Cai et al. / Journal of Computer and System Sciences 80 (2014) 217-236

(a) c1 # *cy. Since B is non-trivial, we may assume the coefficient of x3 in B is non-zero. Fix any assignment to
X4, ..., Xk, We may assume w.l.o.g. x3 = 0 satisfies 8 = 0. We have the following function P(x1, X2, x3), which in our
symbolic notation is

z 5 €c1z
X sax
P= y cy ’
w —Cow
where €, 8 € {£1} depending on the assignment of x4, ...,x;. If € =3, the two entries £c1z and +cix both take

the same +c; or —cq; multiplier, then we have obtained the same ternary function in Case 2 and therefore we can
continue in exactly the same way. So assume € = —§. By renaming c; as —cq{, we may assume the two entries are
in fact —cqz and +c1x respectively. Now we take Q (x1,x2,x3) = P(0, X2, x3)3P(x1, X2, x3). Then we have

1 —C1
1

Q -1 C2
1 —C2

Finally let R(x1, X2, x3) = Q (x1, 0,x3)3Q (x1, X2, x3). Then
11

1 3oy
1
C?Cz

R=

Note that cic; = c2/cy, since ¢f = 1. It is easy to see that RM=*%=0 =12 1+ ¢,/c1]. Since c;/c1 # £1 we have
c2/c1 = %i. Then this unary function [2, 1+ i] ¢ <7 since it has unequal non-zero norms 2 # |1 % i|.

€1 = =+c; € {1, —1}. In this case F¥1=1/FX1=0 only takes values &1. Then Rpx =« is precisely where FX1=1/Fx1=0 —
+1. If it is not affine, we have #P-hardness by Lemma 5.6. So let Rpx=+ be defined by an affine linear form
Y (x2,...,Xx) =0. It can be directly verified that

—
=3
~

F= FX1=0 A ilX1]+lX1J+[X1J+lX1®VJ+lVJ+l}/J+lVJ'

Thus, F*1=0 € o7, which implies that F € 27. A contradiction.
(c) ¢1 = £c3 € {i, —i}. In this case F*1=1/F*1=0 gnly takes values +i. We may assume ¢; =cy =i by changing o to
o @1 andfor B to B @1 if necessary. Consider the subset

S={(x2.x3,....,x0) | F"=1/F1=0 =i}
={(0.x3,....%) |a(x3, ..., %) =0} U {(1,x3, ..., %) | Bx3,..., %) =0}.

First suppose all coefficients of x3,...,x, in o« and B are the same. If o(xs3,...,xx) = 25523 oiXxj +a and
B(x3,...,X) = 24‘23 aiXx; + b over Zy, then (a ® b)xy + ZL3 aix; +a=0 over Z, defines the set S. Denote this
affine linear form by y, then it can be verified that

F = Fx1=0 jxi@yI+HyI+lyI+y]

Thus, F*1=0 € o7, which implies that F € 27. A contradiction.

Now suppose some coefficients of x3,...,x, in o and B differ. W.Lo.g. suppose the coefficient of x3 is 0 in ¢, and
is 1 in B respectively. Fix any assignment to x4, ..., X, then the value of « is fixed, and yet by setting x3 to 0 or 1,
the value of g flips. Then we get a function

z €z
X €x

PG, x2,x3) = 4
w

—5w

for some €, § = +i. From here the proof is completed as in Case 2. O

Lemma 5.8. For any function F ¢ &2, either #CSP({F}) is #P-hard, or we can simulate, using F, a function [a, 0, 1,0] (or [0, 1, 0, a]),
where a # 0, or a binary function H ¢ &2 having no zero values.

We note that [a,0,1,0] and [0,1,0,a] ¢ &2, for a+#0.

Proof of Lemma 5.8. Suppose F has arity k. Since &2 contains all unary functions and F ¢ &2, k > 2. Define an |Rp| x k
{0, 1}-matrix whose rows list every element of Rr, and columns correspond to xi, ..., Xk. This matrix simply lists all the
elements of Rr as rows in some order.

J.-Y. Cai et al. / Journal of Computer and System Sciences 80 (2014) 217-236 229

We first remove any column which is all-0 or all-1. If we remove an all-0 column corresponding to x;, then X € Rp —
x; = 0. The updated table corresponds to Rpx-o. Similarly if we remove an all-1 column corresponding to x;, then X e
Rr = x; = 1. If two columns are identical or are complementary in every bit, we remove one of them. If the columns at x;
and x; are identical, then X € RF = x; ® xj = 0. Then the updated table removing the column at x; corresponds to R px;=x.
Similarly for a pair of complementary columns at x; and x; we have X € RF = x; ®x; =1, and the removal of the column
at x; also corresponds to R pxj=x.

We remove columns as long as possible. We claim that this removal process maintains the property of not belonging
to 2. Suppose we removed an all-0 column at x;, to get G = FX=0, Since X € Rp = x; =0, we have F = Ag(x;) - G, where
Ao(x;) is the unary function [1,0]. Thus G € & = F € #. The case with removing an all-1 column is similar, where we
use the unary function Aq(x;) = [0, 1] instead. If we removed the column at x; identical to the column at x;, then G = F*i=*
and F = Xxi=x; * G. Finally for the removal of a complementary column at x; we have G = F¥=* and F = Xxoxjo1=0-G. In
every step, we maintain G ¢ Z.

Now we suppose there is some G ¢ & where no more columns can be removed by the above process. There must be
some columns left in the table, otherwise the function just before the last column removal is a unary function, hence in &.
In fact G being not in 2, the arity of G is at least two. For simplicity we still denote it by k. Thus k > 2. We have two
cases:

Case 1: |R¢| < 2¥. By Lemma 5.6, we may assume R is affine, given by a linear system AX = 0. We have that |Rg| =
IRf| # 0, as we never deleted any rows, so the number of rows remains the same. Since G is not unary, the table has
more than one column. If [Rg| =1, any two columns (of length one) must be identical or complementary and the removal
process should have continued. Thus |R¢| > 1. W.l.o.g. assume x1,...,Xs are free variables in AX =0 and Xs1,..., X are
dependent variables. |Rg| = 2° is a power of 2. We have shown that s > 1. By |R¢| < 2X, s < k. We claim s > 2. If instead
s =1, then every xa, ..., X, is dependent on x; on Rg, so the column at x, must be an all-0 or all-1 column, or be identical
or complementary to x{, and the removal process would have continued. The expression of x; in terms of x1,...,x; must
involve at least two non-zero coefficients; otherwise the column at x;, must be an all-0 or all-1 column, or be identical or
complementary to another column. W.l.o.g., say the coefficients of x1, x, are non-zero.

Let P(x1, X, X)) = G3=0:-X=0Xs11=%,...Xk-1=* (these two lists of variables could be empty). It can be verified that Rp =
Xx1@®x2®x,=c for some ¢ € Zy.

The affine linear equation x; @ X2 ® xx = ¢ is symmetric. Now we define a “symmetrized” function H(xq1, X2, Xx) =
I—[oes3 P(X5(1), X5 (2)s X5 (k))» Where S3 is the symmetry group on three letters {1,2,k}. This H is a symmetric function
on (x1,X2, X,) and has support Ry = Rp. Thus, after normalizing, H = [a, 0, 1, 0] or [0, 1, 0, a] where a # 0. We remark that
this ternary function H ¢ £2. In fact if H were to be in &2, any expression as a member of &2 must not use any binary
disequality function, since there is a non-zero value for x; =x; =0, i, j € {1, 2, k}, with the third variable set to c. Similarly
it cannot use any binary equality function since there is a non-zero value for (0, 1, ¢). But unary functions alone cannot
work either.

Case 2: [Rg| = 2. If for all 1 <i <k, the ratio G*=1/G*=0 is a constant function c; (since |[R¢| = 2 there are no divisions

This gives G € &2, a contradiction.

Now suppose for some i, G¥=1/G%=0 is not a constant function. W.L.o.g., we assume i = 1. The Boolean hypercube on
(X2,...,%) € {0, 1}*1 is connected by edges which flip just one bit. W.L.o.g., along some flip of x; we have two different
values. Suppose G*1=1/G*1=0(0, a3, ..., ay) # G¥=1/G¥=0(1,as, ..., q;), for some as,...,a;. Set X3 =as,..., X = ax, We
get a binary function H(x1, x2) = G(x1,X2,4as, ..., a,). We have H(1,0)/H(0,0) # H(1,1)/H(0, 1), hence the rank of H =
oy vy] 2

If H were in &, then partition the variable set according to connectivity by binary equality and disequality functions.
If any connected component has at least 2 variables, we can set values to these 2 variables so that H = 0. But H is never
zero. Then each component must be a single variable and H is defined by a product of unary functions. But such a function

has rank 1. This contradiction proves that H ¢ & and completes our proof. O

5.4. Proof of Theorem 3.1

Now we are ready to complete the proof for the main Theorem 3.1.

Proof of Theorem 3.1. By Theorem 4.1, #CSP(</) is computable in polynomial time. Also #CSP(Z?) is obviously computable
in polynomial time.

If 7 ,(Z </, by Lemma 5.7, either #CSP(.%) is #P-hard, or we can simulate a function F = [1,A] ¢ /. In particular
A ¢ {0, £1,£i}. If F ;(_ P, by Lemma 5.8, either #CSP(.%) is #P-hard, or we can simulate a function P = [qa,0, 1, 0], or
P’ =[0,1,0,a], where a # 0, or a binary function H ¢ &2 having no zero values.

Firstly, we prove #CSP({F, P}) is #P-hard. Clearly P¥'=* =[a,1,1]. If a ¢ {1, —1}, it is #P-hard by Lemma 5.2. If a €
{1, —1}, we can construct Q (x1,x3) = ZX3 P(x1,x2,x3)F(x3) = [a, A, 1], which is [£1, A, 1]. Both of them are #P-hard by
Lemma 5.2. The proof for #CSP({F, P’}) is the same.

230 J.-Y. Cai et al. / Journal of Computer and System Sciences 80 (2014) 217-236

Secondly, we prove #CSP({F, H}) is #P-hard. After normalizing, we may suppose H = [;’;] where xyz # 0, and z # Xxy.
There are two cases, depending on whether z = —xy.

For the case z# —xy, we construct a symmetric function H(x1,x2)H(x2,X1) = [1,xy, z2]. By the conditions xyz # 0,
Z#xy, z# —Xy, it is impossible to be the first three tractable cases in Lemma 5.2. If it is the last two tractable cases, then
xy is a power of i. Now we can form the function H(x1, x2)H (x2, x1)F(x1) F(x2), which is [1, Axy, A2z2]. This function has
no zero entry and its 2 x 2 matrix form has rank 2, so it is not of the first three tractable cases in Lemma 5.2. If it were
in the last two tractable cases, then Axy is a power of i, which implies that A = (Axy)/(xy) itself is a power of i. However
since [1, A] ¢ </, we know A is not a power of i.

For the case z= —xy, we construct some binary functions with an integer parameter s as follows:

Y H(x1.x3)H(x2.x3) (F(x3))" = [1 4+ 1°%%, (y + 2°x2), (y* + 2°2)]

X3
=1 + 5%, y(1- ksxz), yz(l + ksxz)].

As) is not a power of i, at most one of the two values x*> and Ax? can be a power of i. Now we choose s=0 or s =1
above so that ASx% ¢ {41, +i}.

After normalizing, we may write the function [1 + A5x2, y(1 — 25x2), y2(1 + Ax9)] as [1, y(1 — A5x2)/(1 + A5x2), y2),
noticing that 1+ Ax% # 0. We claim that this function is not one of the five tractable cases from Lemma 5.2. Since there are
no zero entries, clearly it is not the first two cases. Its matrix form has rank 2, therefore it is not the third case. If it were the
fourth tractable case [1, +i, 1], then y = £1, and (1 —2A%x%)/(1+1°x?) = =i. This implies that A5x? = +i, which is impossible.
If [1, y(1 — 25x%) /(1 + A°x%), y?]1 = [1, £1, —1], the fifth tractable case, then y = =i, and again (1 — A°x%)/(1 + A5x?) = =i,
also impossible.

The proof of Theorem 3.1 is complete. O

6. Maximum degree 3

In this section we prove Theorem 3.2. This theorem states that our dichotomy theorem holds even when restricted to
#CSP problems where every variable appears at most three times. Of course the tractability still applies. The claim is that,
for any .# such that .# ¢ </ and . ¢ 22, the #CSP problem on .% over these restricted input instances remains #P-hard.

Assume . ¢ o/ and .F ¢ &, we want to prove the following sequence of reductions:

#CSP(F) <1 #R3-CSP(Z U {=3})
<1 #R3-CSP(Z U {H})
<1 #R3-CSP(F),

where H is a non-degenerate binary function. The first reduction is easy and will be given shortly. We note here that binary
equality is for free in general #CSP but it is not free when we consider #CSP with bounded occurrence of variables. In
Lemma 6.1 we give the second reduction above. In Theorem 2.1 we give a preparation theorem in which we introduce a
localized form of holographic reductions using orthogonal matrices. This theorem is used in the proof of the third reduction
above, in Lemma 6.5.

To prove the first reduction, consider an arbitrary #CSP(.%) instance. Suppose a variable x appears in £ > 3 constraint
functions. Our reduction is as follows. We introduce a new variable x’ and a new constraint (=3)(x, x’), which requires that
the variables x and x’ take the same value. Then we replace two appearances of x by x'. After the modification, x' appears 3
times, and x appears £ — 1 times. Repeating this substitution, we can make x, and its copies ¥/, ... all appear only 3 times.
This modification does not change the value of the #CSP problem. We can do this for every variable by introducing more
new variables, and the size of the problem stays polynomially bounded.

Our first key lemma is to show that if we have any non-degenerate binary function H € .% (this means that the matrix
[52?81 ZE?K] is non-degenerate), we can interpolate (=;). For readers who are familiar with holographic reductions, the
use of holographic reductions is unmistakable but implicit here. Dyer and Greenhill [4] proved such a result for a symmetric
binary function H. We adapt their idea from the symmetric case using the Jordan normal form.

Lemma 6.1. Let H : {0, 1}> — C be a non-degenerate binary function. Then for any .# containing H, we have
#R3-CSP(F U {=3}) <r #R3-CSP(F).

2 0

Proof. Consider the Jordan normal form of H. There are two cases: either there exist T and A = (0

TAT™1, or there exist T and A = (3 ;) such that H=TAT.

), such that H =

J.-Y. Cai et al. / Journal of Computer and System Sciences 80 (2014) 217-236 231

For the first case, consider an instance I of #R3-CSP(.%# U {=3}). Suppose the function (=;) appears m times. Replace
each occurrence of (=) by a chain of T, (=;), T~!. More precisely, we replace any occurrence of (=)(x,y) by T(x,z) -
(=2)(z, w) - T~ Y(w, y), where z, w are new variables. This defines a new instance I’. Since TI,T~! = I, where I denotes
the 2 x 2 identity matrix, the #CSP value of the instance I and I’ are the same. We can stratify the CSP sum defining the
value on I’ according to how many (0,0), (0,1), (1,0) and (1,1) assignments are given to the occurrences of the new
EQUALITY constraints of the form (=;)(z, w). Clearly any assignment assigning a value (0, 1) or (1,0) to some (=3)(z, w)
has a 0 contribution to the sum. Thus we only need to consider those assignments which assign i many times (0, 0), and
m —i many times (1, 1). Let the sum over all such assignments of the evaluation (including those of T(x, z) and T~ (w, y))
on I’ be p;. Then the CSP value on the instance I’ can be written as Y it pi.

Now we construct from I a sequence of instances I; indexed by k. Replace each occurrence of (=3)(x, y) by a chain
of k functions H to get an instance I,’(of #R3-CSP(.%#). More precisely, each occurrence of (=3)(x,y) is replaced by
H(x,x1)H(x1,%2)--- H(xx_1, y), where x1,X2,...,X,_1 are new variables (only for this occurrence of (=3)(x, y)). The func-
tion of this chain is H* = TA¥T~. A moment’s reflection shows that the value of the instance I,Q is

m m
i .
> 25" =254 pia/r),
i=0 i=0

If A1/X; is a root of unity, then take a k such that (M/Az)" = 1. (Input size is measured by the number of variables and
constraints. The functions in .% are considered constants. Thus this k is a constant.) We have the value Y ., pik’{ikg(mf') =
Ak~ pi. Since H is non-degenerate, A2 #0, we can compute the value of I from the value of I;.

If A1/A; is not a root of unity, (A1/12)",i=1,2,... never repeat. We can take k=1,...,m+1 and get a system of linear
equations about p;. Because the coefficient matrix is Vandermonde in (A1/A2)}, i=1,2,...,m+ 1, we can solve p; and get
the value of I.

For the second case, the construction is the same, so we only show the difference with the proof in the first case. Again
we can stratify the #CSP value for I’ according to how many (0, 0), (0, 1), (1,0) and (1, 1) assignments are given to the
occurrences of the new EQUALITY constraints of the form (=3)(z, w). We cluster all assignments according to exactly how
many times out of m the new EQUALITY constraints of the form (=;)(z, w) are assigned (0, 0) or (1,1), and the remaining
ones are assigned (0, 1). Note that any assignment with a non-zero number of (1, 0)’s will produce a 0 contribution in the
#CSP value for I,’<, after the substitution of each (=3)(x, y) in I by H(x,x1)H(x1,X2)--- H(X¢x_1, y). This is because, by this
)»k k}\k—]
0)Lk
many (0, 0) or (1,1), and m —i many (0, 1) of the evaluation (including those of T(x,z) and T~!(w, y)) on I’ be p;. Then
the #CSP value on the instance I’ (and on I) is just op,.

The value of I}, is

substitution, effectively each (=2)(z, w) in I’ is replaced by A¥ = () Again let the sum over all assignments with i

m) m
Z ,Oi)uki (kkk_l)m_l — k(k—])m Z(}Li,oi)km_i-
i=0 i=0

We can take k=1,...,m+ 1 and get a system of linear equations on Al p;. Because the coefficient matrix is a Vander-
monde matrix of full rank, we can solve A!p;. Since H is non-degenerate, A # 0, we can compute pp, which is the value
onl. O

In the following argument, it is easier if we view #R3-CSP(.%) as Holant({=1, =2, =3} | -%). Lemma 6.1 shows how
to interpolate (=3) on the RHS in the setting of Holant({=1,=3,=3}|.%), when .# contains a non-degenerate binary
function H.

Our next step is to realize a non-degenerate binary function H from .%# which is assumed to be neither a subset of .
nor a subset of Z.

As F ¢ P, certainly F ¢ 2, therefore there exists some F € .# and F ¢ 2. We will prove that if F ¢ &, then we can
use F to construct a non-degenerate binary function H. That is, Holant({=1, =3, =3} | % U{H}) <7 Holant({=1, =2, =3} | %).
In fact, we prove a stronger statement

Holant({=1, =2} | # U {H}) <1 Holant({=1, =2} | Z).

This result may be of independent interest in the study of Holant problems. (The unary EQUALITY function (=1) =[1,1] is
the function on one variable that always evaluates to the constant value 1, and is available in all #CSP problems, because
adding any number of constraints of the form (=1)(x), for any variable x, the answer is unchanged.) Another advantage of
this restricted construction is that we can use the technique of a local holographic reductions without considering its effect
on (=3).

232 J.-Y. Cai et al. / Journal of Computer and System Sciences 80 (2014) 217-236
As a first step, we prove

Lemma 6.2. If a function F € .% — 2, then we can use F, Ag, A1 and (=) to simulate a non-degenerate binary function H. That is,
there exists a non-degenerate binary function H, such that

Holant({Ao, A1, =2}

Z U{H}) <7 Holant({Ao, A1, =3}

7).

Proof. Suppose the arity of F is k. All functions of arity one are in &, so k# 1. If k=2, we let H=F.

Suppose k > 3 and the conclusion holds for arity less than k. In the following, whenever we construct (simulate) a
function of arity less than k, we always assume the function is in &, for otherwise the lemma is proved by induction. We
eventually will reach a contradiction.

We note that, since we can use the unary functions Ag and A1, from the given F we can construct any F%=¢ on k — 1
variables, where 1 <i<k, c=0or 1.

If F¥1=0 is identically 0, then obviously F = A; ® F*1=1 € 2. A contradiction.

Now we assume F¥1=0 is not identically 0, and suppose F¥1=9(Y) £ 0, for some Y = y,---yx € {0, 1}¥~1. Let Y denote
Y2--- Yk, where y;=1—y;. Let Z=2;---z; be any assignment in {0, 1}¥=1 such that Z Y and Z # Y. We want to show
that,

either F=1(2) = F1=(2) =0,
Fa=l(y) Fn=1(z)
Fa=0(y) FX1=°(Z)}

or [F’“:O(Z) #0and

A consequence of (1) is that

Fa=1(y)

X1 =0
g @) 2)

F=l(z) =

forall Z#Y and Z # Y. Clearly (2) also holds for Z =Y.

To prove (1), w.lo.g., since Z # Y, we suppose y, =z, =c.

Because FX2=C ¢ @, and F*2=¢(0y3---yy) = FX1=0(Y) £ 0, FX2=C has the form [1,1] ® [a3,b3] ® --- & [ax, bk]. As y, =
7y =, it follows that FX1=1(Z) = AF*1=0(Z), and F¥1=1(Y) = AF¥*1=0(Y). In particular, F¥=0(Z) = 0 = F¥=1(Z) = 0. Thus,
either F1=1(Z) = F¥1=0(7) =0, or [F*1=0(Z) #£0 and F¥*1=1(Z)/F*1=0(Z) = » = Fx=1(Y)/F*=0(Y)].

Consider all Z € {0, 1}*~! such that Z Y and Z # Y. There are two cases:

1. There exists a Zg, satisfying Zo Y and Zo # Y such that F¥1=0(Zq) 0.
We can substitute Y by Zg in the above proof, and since Y # Zy and Y # Zo, (1) applies to the pair Zo and Y. Thus
either F*=1(Y) = FX1=0(Y) =0, or [F*'=0(Y) #£ 0 and F¥*1=1(Zg)/F*1=0(Zq) = F*=1(Y)/F¥*1=0(Y)]. It follows that (2) is
valid for all Z € {0, 1}*~1. Hence F =[1, F©'=1(Y)/F*1=0(Y)] ® F*1=0 ¢ 2. A contradiction.
Note that for the remaining cases from this case 1 we can assume the support of FX1=0 is contained in {Y,Y}. We
observe that if there exists some Z # Y and Z # Y, such that F\1=1(Z) £ 0, then the second alternative of (1) holds.
Thus F¥1=9(Z) + 0 as well, and we are in case 1. Thus, for the remaining case we have:

2. F is zero at all points other than the following four inputs: (0Y), (1Y), (0Y), (1Y).
By induction F¥'=0 € & and therefore it has the form F¥*=0 =[a;,by]® --- ® [ak, by]. It is zero everywhere except
possibly at Y and Y. If it is non-zero at both points, then FX1=0(Y)FX1=0(Y) = ayb; - --ayby 0. This implies that
F¥1=0 is non-zero everywhere. Since k >3, |{Y, Y}| =2 < 2k~ this is impossible. Since F¥*1=0(Y) £ 0, it must be that
F(0Y)=0.
Similarly, because F*'=! € 2, at most one of F(1Y) and F(1Y) is non-zero. If F(1Y) =0, then F is non-zero only
possibly at (0Y), (1Y). Thus F*2=Y2 is identically 0, and F = A(x;) - F*2=¥2 where A(x;) is a unary function on xy, such
that it takes value 1 if input x, = y, and O otherwise. Note that F*2=Y2 ¢ & by induction, and A(xy) is just [0, 1] or
[1,0] on x3, it follows that F € 2. A contradiction.
Hence F(1Y) # 0. Therefore F(1Y) = 0. We conclude that F is zero everywhere except at inputs (0Y), (1Y), where it is

2
non-zero. Now we construct H(x, y) = sz AAAAA X F(x,x2,...,X)F(y,%2,...,x¢). Then H = [F (;JY) szﬁ)] ¢9. O

Lemma 6.2 shows that if we had available [0, 1] and [1, 0] then we can construct a non-degenerate binary function H.
One way to get [0, 1] and [1, 0] is via a form of pinning lemma, which usually requires EQUALITY functions. However, not all
EQuALITY functions are freely available for #R3-CSP problems, therefore it is not clear how to get [0, 1] and [1, 0] by some
pinning lemma. The only available unary function is (=1) =[1, 1], but we find [1, 0] is easier to analyze than [1, 1], so we
use a holographic reduction (in fact, an orthogonal holographic reduction) to turn [1, 1] into Ag =[1, 0].

J.-Y. Cai et al. / Journal of Computer and System Sciences 80 (2014) 217-236 233

It is an algebraic fact that (=) is unchanged under an orthogonal holographic transformation: (=) can also be written
as a row vector [1, 0]%2 + [0, 1]®2. Then for any orthogonal matrix M, the holographic transformation is

(11,01%% + [0, 11%%)M®? = (11,01M)** + ({0, 11M)**

which is equal to [1, 01%2 + [0, 11%2, as can be easily checked. (We are not claiming [1,0]M =[1,0] and [0, 1]M =[1, 0],
but the equality holds for the sum of the tensor products.) Thus M®?2 turns (=;) into (=).

We now introduce a technique of local holographic reductions. Instead of applying a holographic reduction on the whole
signature grid instance, implicitly taken as the default in Theorem 2.1, we can apply it locally for a fragment of an input sig-
nature grid instance, which represents a gadget construction. We will construct such a gadget that realizes a non-degenerate
binary function using a function not in 2. For the local orthogonal holographic transformation, the function of gadgets will
be changed according to M. In Holant(¥ | .%), if we construct a gadget, respecting the bipartiteness of the allowed connec-
tions by Holant(¥ | .%), to realize a function H whose inputs are those of functions in .%, then we call this gadget a RHS
gadget. This gives us a reduction from Holant(¥ | .# U {H}) to Holant(¥4 | .%).

Lemma 6.3. Let H be a function with k variables constructed by a RHS gadget in problem_ Holant(¥ | .%). Let M be orthogonal. Then we
can construct a function H = M®¥H if we use the same gadget in problem Holant(% | 3'7) where F = {M®F | F € .Z, F has arity k}
and 4 = (FMT™®" | F € 9, F has arity ¢}.

Proof. The proof is a simple adaptation of the proof for Theorem 2.1. We insert a binary equality function (=) on every
edge in the gadget for H. We also insert this (=) on the k dangling edges, which are the external input edges for the
gadget of H. This will not change the function of the gadget. Then we can apply the holographic reduction defined by M.
As mentioned before, the binary equality function (=) is invariant under this orthogonal transformation. Every function in
% is transformed to the corresponding function in .%, and similarly for ¢. The only difference is that the (=3) in the k
dangling edges transform to a binary function with the matrix M, because they only receive one copy of M each. This gives
the final H=M®*H. O

Now we return to our problem. We have some F ¢ . We want to prove that there exists a binary function H ¢ &
(i.e., H is non-degenerate) such that Holant({=1, =2} | {F, H}) <r Holant({=1, =2} | {F}) by constructing a gadget to realize
H using F. We choose the orthogonal matrix M = f[] !] to do a local holographic reduction. This changes [1, 1] to

[1,0] after a scaling, and changes (=;) into (=2). By Lemma 6.3, if we can construct a RHS binary gadget H ¢ 2 in
Holant({Ag, =2} | {F}), then we can construct a RHS gadget H in Holant({=1, =2} | {F}), where H=M®2H.

In problem Holant({=1, =2} | {F}), the holographic reduction is restricted in the gadgets realizing H. This local holo-
graphic reduction is illustrated in the following commutative diagram.

#{=1,=2} | (F}—=H
M®k 11\/1@2
#{Ao, =2} | {F}——H

A simple observation here is
Lemma 6.4. Let M be a non-singular 2 x 2 matrix, then a function F with arity k is in 2 iff M®¥F is in 2.

Applying a local holographic reduction and Lemma 6.4 to the pair F, F and the pair H, H, we conclude that to construct
a gadget realizing a binary function H ¢ % in Holant({=1, =2} | {F}), is equivalent to construct a gadget realizing a binary
function H ¢ 2 in Holant({Ag, =2} | {F}). This is the following lemma.

Lemma 6.5. If function F ¢ 2, then we can use F, [1,0] and =; to simulate a non-degenerate binary function H. That is,
Holant({Ao, =2} | {F, H}) <r Holant({Ag, =2} | {F}).

Proof. Suppose the arity of F is k. All functions of arity one belong to 2. Hence k > 2. If k = 2, we let H = F. Now suppose
k > 3 and the conclusion holds for arity less than k.

We have Ap =1, 0]. This allows us to fix some inputs to the value 0. If we construct some function not in & with arity
less than k, then the proof is completed by induction; so we always assume any constructed function of arity less than k is
in 9.

With [1,0] we can construct F¥*1=C, Therefore we may assume F¥1=0 ={[a;, b;]® [a3,b3]1® --- Q [ai, bx] € Z. There are
three cases:

234

1

J.-Y. Cai et al. / Journal of Computer and System Sciences 80 (2014) 217-236
7/ N\
/ \
/ H \
/ \
[\
; :
\ 1
1
\\ /I
\
\\\\ H ////
Fig. 1. From H®? to H2.
Fx1=0 g identically zero. This means that there exists some j e {2,...,k}, such that aj =b; =0.

If F¥1=1 € 9, then F =[0,1]1® F¥=! € 2. A contradiction.

Now suppose Fxi=1 ¢ 9. We define the following function P(xa,..., Xk, ¥2,...,Yk) = le,yl F(x1,...,x)F(y1,...,
yiolh(x1,y1)=FQ,x2,...,x)F(1, y2, ..., yr). This function can be obtained by taking two copies of F and connecting
the respective two first variables x; and y1 by (=3). This connecting edge labeled by (=;) maintains the bipartite

structure. Since F¥1=0 is identically zero, P = (F’“:l)@z, and we can use it as two individual copies of the function
F¥1=1_on two sets of disjoint variables (x2,...,x) and (y2,..., yx). Since F¥1=! ¢ 9, by induction hypothesis, we have
a construction for simulating a binary non-degenerate H using F¥'=1, Ag and (=). Take two copies of this construc-
tion, and replace each two copies of the function F¥'=! by one copy of P. This realizes H®2. Let the variables of H®2
be (X1, y1, X2, y2), where (x1, y1) are the variables of the first copy of H and (x,, y;) are the variables of the second
copy of H. Then connecting two inputs y; and x; of the four inputs of H®2 by (=;), we get a non-degenerate binary
function whose matrix form is the matrix product H2. This is illustrated in Fig. 1.

Now we assume F*'=0 is not identically zero. Thus, for all j € {2,...,k}, if a; =0 then b; #0.

. There exists some j € {2,...,k}, such that a; =0, and for all jel2,... k), if ajy =0 then by #0.

For all j such that aj # 0, fix the value of x; to be 0 (we have Ag) and we get a function Q of the form [0,¢1]® - ®
[0, cm], where m > 1 and all ¢ # 0. This is a constant multiple of (A1)®™, which allows us to effectively apply A1 on m
separate variables at once. Take m copies of the construction from Lemma 6.2, and then replace every m occurrences of
A1 by the (A1)®™ constructed above. We get some H®™, for a non-degenerate binary H. Then by the same connection
technique we can get H™, which is a non-degenerate binary function.

. All a; are non-zero, for je{2,... k}.

F\1=00,...,0) =]—Iljzzaj # 0. Factoring out a global non-zero constant F¥1=0(0...0) from F¥=C, we can get
[1,b2/a2] ® [1,b3/a3] ® --- ® [1,by/ax]. For convenience, we may assume all aj =1, and the function F¥1=0 is
[1,b21®[1,b3] ® -+ - @ [1, b].

Consider an arbitrary Y = yy---yi # 1---1. W.lo.g. suppose y, = 0. Because we have Ao we can get F2=0. So
F*2=0 € 9 by induction. Let F*=0 =[a},b;]1® G(x3,....X). As F2=0(0---0) = F/1=0(0---0) # 0, we get a; # 0. For
any y3---yg € {0, 12, F2=0(1y3- - yu) =b{G(y3 -+ yi), F2=0(0y3---y1) =a;G(y3--- yx), and so

pa=1 Oy3---yp) = Fx2:0(1y3 Vi)
=biG(y3---yi)

b/
= —FF2=0(0y3 - yp)
@
bl
= _LF1700y3 i),
1
So if F¥1=0(Y) =0 then F¥=1(Y) =0, and if F**=0(Y) = 0 then
FY=1(y) by F91=(0-..0)
Fa=0(y)) F0=0(0...0)’

.
as the expression a—} does not depend on y3--- yy.
1

It follows that
either F¥1=1(Y) = F*=%(Y) =0,

Fa=l(y) FX1=1(0.--0)]
Fua=0(y) — Fx1=0(0...0) |’

or [F’“:O(Y) #0and (3)

For both cases,
Fx1=1(Q...0)

x1=1 _
F*1 (y)_FX1:0(0. 0

FXl:O(y)

J.-Y. Cai et al. / Journal of Computer and System Sciences 80 (2014) 217-236 235

holds. Hence,

F=[1,b11®---®[1,bg] + [0, 11®* (4)

for some number §, where by = F¥=1(0-..0)/F*=%(0-..0), and [0, 1]1%* is a vector of length 2% which only affects the
value F(1,...,1). Note that § # 0, for otherwise F € 2.

Next we construct a function P. Note that FX2=%="=X%=0—[1 p;]. By Ag we can realize this unary function. Applying
the function [1, b1] to the first input of F (connected by (=3)), we get the following function P

P(x,...,X%) = Z[l,bl](xl) “F(x1,%2,...,%0).

X1

If (x2,....x0) £ (1,..., 1),

P(xy,....,x) =F(0,x2,...,x) +b1F(1,%2, ..., %)

=] bj+b3 J] b;

jixj=1 Jixj=1
=(1+b7) [T bs
jrxj=1
and
k k k
P(1,...,1)=]‘[b,~+b1<]'[bj+a>=(1+b§)]‘[b,~+b1a,
j=2 j=1 j=2
SO

P= (1 +b%)[l,b2] ® ---®[1, bg] + b14[0, 1]®(k—1).

We note that, starting from the expression (4) the construction of P above can be applied to any x, for 1 <s <k.

There are two subcases:

(a) For some 1 <s <k, bg=i.
W.l.o.g. assume s = 1. In this case b% = —1 implies that P is identically 0 except on input (1,...,1), where it is
non-zero. So we can use P as k — 1 copies of Aq, and by a similar argument to the second case, we can apply
Lemma 6.2. The conclusion holds.

(b) For all 1 <s <k, bs # .
From F, we get P. We may replace F by P, and repeat this construction until only two variables are left. At this
point we get a function of the form, up to a non-zero factor, Q =[1,¢1] ® [1,c2] + (0,0,0,8) = (C]2 C]CC2]+§/) for
some &’ # 0. This is a non-degenerate binary function. O

Corollary 6.1. If F is a function such that F ¢ 9, then

Holant({=1, =2} | {F, H}) <7 Holant({=1, =3} | {F}),

for some non-degenerate binary function H.
We can complete the proof of Theorem 3.2 now.

Proof. If # ¢ o/ and % ¢ &, #CSP(.%) is #P-hard by Theorem 3.1.

Because 9 C &, then & ¢ 2, by Corollary 6.1 of Lemma 6.5, we can simulate a non-degenerate binary function H. That
is, we can reduce #R3-CSP(.% U {H}) to #R3-CSP(.%).

Then by Lemma 6.1, we can reduce #R3-CSP(% U {=,}) to #R3-CSP(# U {H}).

Finally, we can reduce #CSP(.%) to #R3-CSP(.# U {=3}) as discussed before Lemma 6.1. O

Acknowledgments

We thank many colleagues who gave us valuable feedbacks on this work, with special thanks to Martin Dyer, Leslie
Ann Goldberg, Mark Jerrum, Leslie Valiant, Tyson Williams and the anonymous referees for our conference paper at STOC
2009 [1], which contained some of the results reported here.

Jin-Yi Cai is supported by NSF CCF-0830488 and CCF-0914969. Mingji Xia is supported by NSFC 61003030.

236 J.-Y. Cai et al. / Journal of Computer and System Sciences 80 (2014) 217-236

References

[1] J.-Y. Cai, P. Lu, M. Xia, Holant problems and counting CSP, in: M. Mitzenmacher (Ed.), STOC, ACM, 2009, pp. 715-724.
[2] L.G. Valiant, The complexity of enumeration and reliability problems, SIAM]. Comput. 8 (1979) 410-421.
[3] N. Creignou, M. Hermann, Complexity of generalized satisfiability counting problems, Inf. Comput. 125 (1996) 1-12.
[4] M. Dyer, C. Greenhill, The complexity of counting graph homomorphisms, in: Proceedings of the 9th International Conference on Random Structures
and Algorithms, 2000, pp. 260-289.
[5] M.E. Dyer, L.A. Goldberg, M. Paterson, On counting homomorphisms to directed acyclic graphs, J. ACM 54 (2007).
[6] A.A. Bulatov, M. Grohe, The complexity of partition functions, in:]J. Diaz,]. Karhumaki, A. Lepistd, D. Sannella (Eds.), ICALP, in: Lecture Notes in
Computer Science, vol. 3142, Springer, 2004, pp. 294-306.
[7] LA. Goldberg, M. Grohe, M. Jerrum, M. Thurley, A complexity dichotomy for partition functions with mixed signs, SIAM]. Comput. 39 (2010)
3336-3402.
[8] A.A. Bulatov, The complexity of the counting constraint satisfaction problem, in: L. Aceto, I. Damgard, L.A. Goldberg, M.M. Halldérsson, A. Ingélfsdéttir,
I. Walukiewicz (Eds.), ICALP (1), in: Lecture Notes in Computer Science, vol. 5125, Springer, 2008, pp. 646-661.
[9] MLE. Dyer, L.A. Goldberg, M. Jerrum, The complexity of weighted Boolean CSP, SIAM]. Comput. 38 (2009) 1970-1986.
[10] TJ. Schaefer, The complexity of satisfiability problems, in: STOC '78: Proceedings of the Tenth Annual ACM Symposium on Theory of Computing, ACM,
New York, NY, USA, 1978, pp. 216-226.
[11] N. Creignou, S. Khanna, M. Sudan, Complexity Classifications of Boolean Constraint Satisfaction Problems, SIAM Monographs on Discrete Mathematics
and Applications, 2001.
[12] A.A. Bulatov, V. Dalmau, Towards a dichotomy theorem for the counting constraint satisfaction problem, in: FOCS, IEEE Computer Society, 2003,
pp. 562-571.
[13] A.A. Bulatov, A dichotomy theorem for constraint satisfaction problems on a 3-element set, J. ACM 53 (2006) 66-120.
[14] L.G. Valiant, Holographic algorithms, SIAM]. Comput. 37 (2008) 1565-1594.
[15] L.G. Valiant, Accidental algorithms, in: FOCS '06: Proceedings of the 47th Annual IEEE Symposium on Foundations of Computer Science, IEEE Computer
Society, Washington, DC, USA, 2006, pp. 509-517.
[16] J.-Y. Cai, P. Lu, Holographic algorithms: From art to science, J. Comput. Syst. Sci. 77 (2011) 41-61.
[17] J.-Y. Cai, P. Lu, M. Xia, Holographic algorithms by Fibonacci gates and holographic reductions for hardness, in: FOCS '08: Proceedings of the 49th Annual
IEEE Symposium on Foundations of Computer Science, IEEE Computer Society, Washington, DC, USA, 2008.
[18] J.-Y. Cai, P. Lu, M. Xia, Computational complexity of Holant problems, SIAM]. Comput. 40 (2011) 1101-1132.
[19] A.A. Bulatov, M.E. Dyer, L.A. Goldberg, M. Jalsenius, D. Richerby, The complexity of weighted Boolean #CSP with mixed signs, Theor. Comput. Sci. 410
(2009) 3949-3961.
[20] S.P. Vadhan, The complexity of counting in sparse, regular, and planar graphs, SIAM J. Comput. 31 (2001) 398-427.
[21] J.-Y. Cai, X. Chen, P. Lu, Graph homomorphisms with complex values: A dichotomy theorem, in: S. Abramsky, C. Gavoille, C. Kirchner, EM. auf der Heide,
P.G. Spirakis (Eds.), ICALP (1), in: Lecture Notes in Computer Science, vol. 6198, Springer, 2010, pp. 275-286.
[22] M. Dyer, D. Richerby, On the complexity of #CSP, in: Proceedings of the 42nd ACM Symposium on Theory of Computing, 2010, pp. 725-734.
[23] J.-Y. Cai, X. Chen, P. Lu, Non-negatively weighted #CSP: An effective complexity dichotomy, in: IEEE Conference on Computational Complexity, IEEE
Computer Society, 2011, pp. 45-54.
[24]].-Y. Cai, X. Chen, Complexity of counting CSP with complex weights, in: STOC, 2012, pp. 909-920.
[25] H. Guo, S. Huang, P. Lu, M. Xia, The complexity of weighted Boolean #CSP modulo k, in: J.-Y. Marion, T. Schwentick (Eds.), STACS, in: LIPIcs, vol. 5,
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2011, pp. 249-260.
[26]].-Y. Cai, S. Huang, P. Lu, From Holant to #CSP and back: Dichotomy for Holant problems, in: O. Cheong, K.-Y. Chwa, K. Park (Eds.), ISAAC (1), in: Lecture
Notes in Computer Science, vol. 6506, Springer, 2010, pp. 253-265.
[27] S. Huang, P. Lu, A dichotomy for real weighted Holant problems, in: IEEE Conference on Computational Complexity, IEEE, 2012, pp. 96-106.
[28] J.-Y. Cai, H. Guo, T. Williams, A complete dichotomy rises from the capture of vanishing signatures, arXiv:1204.6445 [cs.CC], 2012.

http://refhub.elsevier.com/S0022-0000(13)00141-4/bib53544F433039s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib56616C69616E74373962s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib43726569676E6F75483936s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib44796572473030s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib44796572473030s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib616379636C6963s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib42756C61746F76473034s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib42756C61746F76473034s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib474A475431s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib474A475431s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib42756C61746F763038s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib42756C61746F763038s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib7765696768746564435350s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib53636861656665723738s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib53636861656665723738s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib435350626F6F6Bs1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib435350626F6F6Bs1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib42756C61746F76443033s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib42756C61746F76443033s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib42756C61746F763036s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib48415F4As1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib41415F464F4353s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib41415F464F4353s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib53544F433037s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib464F43533038s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib464F43533038s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib686F6C616E74s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib42756C61746F7644474A5230392D6D697865647369676E637370s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib42756C61746F7644474A5230392D6D697865647369676E637370s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib56616468616E3031s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib486F6D6F6D6F72706869736D73s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib486F6D6F6D6F72706869736D73s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib447965722D52696368s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib63636C2D637370s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib63636C2D637370s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib6361696368656E3132s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib47756F484C583131s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib47756F484C583131s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib43484C3039s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib43484C3039s1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib686F6C616E742D7265616Cs1
http://refhub.elsevier.com/S0022-0000(13)00141-4/bib686F6C616E742D636F6D706C6578s1

	The complexity of complex weighted Boolean #CSP
	1 Introduction
	1.1 Related works and further development

	2 Deﬁnitions
	3 Results and proof outline
	4 Tractable cases
	5 Hardness
	5.1 One binary function
	5.2 Non-afﬁne functions
	5.3 Reducing arity
	5.4 Proof of Theorem 3.1

	6 Maximum degree 3
	Acknowledgments
	References

