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Abstract. In one dimensional facility games, public facilities are placed
based on the reported locations of the agents, where all the locations of
agents and facilities are on a real line. The cost of an agent is measured
by the distance from its location to the nearest facility.

We study the approximation ratio of social welfare for strategy-proof
mechanisms, where no agent can benefit by misreporting its location.
In this paper, we use the total cost of agents as social welfare function.
We study two extensions of the simplest version as in [9]: two facilities
and multiple locations per agent. In both cases, we analyze randomized
strategy-proof mechanisms, and give the first lower bound of 1.045 and
1.33, respectively. The latter lower bound is obtained by solving a related
linear programming problem, and we believe that this new technique of
proving lower bounds for randomized mechanisms may find applications
in other problems and is of independent interest.

We also improve several approximation bounds in [9], and confirm a
conjecture in [9].

1 Introduction

In a facility game, a planner is building public facilities while agents (players)
are submitting their locations. In this paper, we study the facility game in one
dimension, i.e., the locations of the agents and the facilities are in the real line.
Let the position reported by agent i be xi ∈ Ri ⊆ R. Assume the number of
agents is n and the number of public facilities available is k. A (deterministic)
mechanism for the k-facility game is simply a function

f : R1 ×R2 × · · · × Rn →Rk.

In this paper, we assume Ri = R for all agents. The cost of an agent is the
distance from its true location to the nearest facility. Let {l1, l2, . . . , lk} be the
set of locations of the facilities. The cost of agent i is cost({l1, . . . , lk}, xi) =
min1≤j≤k |xi − lj |. A randomized mechanism returns a distribution over Rk.
Then the cost of agent i is the expected cost over the distribution returned by
the randomized mechanism.

An agent may misreport its location if it can reduce its own cost. A usual
solution concept is strategy-proofness, which is also the focus of this paper. In
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a strategy-proof mechanism, no agent can unilaterally misreport its location to
reduce its own cost. For x = {x1, x2, . . . , xi, . . . , xn} ∈ Rn, we define x−i =
{x1, . . . , xi−1, xi+1, . . . , xn}. A mechanism is strategy-proof if for any xi and x′i �=
xi, cost(f(x−i, xi), xi) ≤ cost(f(x−i, x

′
i), xi). In other words, no matter what

other agents’ strategies are, one of the best strategies for agent i is reporting
its true location. Our strategy-proof randomized mechanisms are defined by the
expected costs of the agents.

The facility game problem has a rich history in social science literature. Con-
sider the case that we are building one facility in a discrete set of locations (alter-
natives). Agents are reporting its preference for the alternatives. The renowned
Gibbard-Satterthwaite theorem [6,10] showed that if the preference on the alter-
natives for each agent can be arbitrary, the only strategy-proof mechanisms are
the dictatorships when the number of alternatives are greater than two.

In the facility game, however, the preferences on the facility locations are not
arbitrary. In particular, agent i has a single preferred location xi. When two lo-
cations are on the same side of xi, agent i will always prefer the one closer to xi.
This kind of admissible individual preferences are defined as single-peaked pref-
erences, which was first discussed by Black [3]. Since the Gibbard-Satterthwaite
theorem does not hold with single-peaked preferences, the facility game admits a
much richer set of strategy-proof mechanisms. Moulin [8] characterized the class
of all strategy-proof mechanisms for one-facility game in the real line. (One un-
necessary assumption in the proof is dropped by Barberà and Jakson [2], and
Sprumont [12].) In particular, a generalized median voter scheme is sufficient to
characterize all strategy-proof mechanisms. Interested readers may refer to the
detailed survey by Barberà [1].

More recently, Procaccia and Tennenholtz [9] studied the facility game in a
different perspective. They consider the facility game as a special case of the game
theoretic optimization problems where the optimal social welfare solution is not
strategy-proof. They treat the facility game in a broader concept of the games
that payments are not allowed or infeasible. Such mechanism design problems
without payments are rarely studied by computer scientists, except some special
problems [11].

Procaccia and Tennenholtz studied strategy-proof mechanisms with prov-
able approximation ratios on social welfare, when the optimal solution is not
strategy-proof. For the simplest case of one facility, the median mechanism is
both strategy-proof and optimal for social welfare. Then Procaccia and Tennen-
holtz studied two extensions: (1) there are two facilities; (2) each agent controls
multiple locations (with one facility). In both cases, the optimal solutions are no
longer strategy-proof in general. Therefore, it is interesting to study strategy-
proof mechanisms with good approximation ratios for these extensions. This is
also the focus of this paper. A strategy-proof mechanism has an approxima-
tion ratio of α if for every input instance, the social cost for the output of the
mechanism is always at most α times the social cost for any solution.

We remark that, if payment is allowed, then the well-know Vickrey-Clarke-
Groves (VCG) mechanism [13,4,7] will give both optimal and strategy-proof
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solutions for both extensions. However, in many real world scenarios, payment
is not available as noted by Schummer and Vohra [11]. We focus on the strategy-
proof mechanisms without money in this paper.

1.1 Our Result

We study the approximation ratios of social welfare for the strategy-proof mech-
anisms in the facility game with one or more facilities. The social welfare func-
tion we use is the social cost, i.e., the total cost of all agents. We focus on the
approximation ratios for social cost of the strategy-proof mechanisms, where
we improve most results in [9]. Furthermore, we also provide several novel ap-
proximation bounds which are not previously available. Table 1 summarizes our
contribution.

Table 1. Our results are in bold. The numbers in brackets are previous results in [9]
unless stated otherwise. (N/A means no previous known bound.)

Two Facilities Multi-Location Per Agent (One Facility)

Deterministic
UB: (n− 2)
LB: 2(1.5)

UB: (3 [5])
LB: (3 [5])

Randomized
UB: n/2 (n− 2)
LB: 1.045(N/A)

UB: 3 − 2minj∈N wj∑
j∈N wj

(2 + |w1−w2|
w1+w2

for n = 2 only)

LB: 1.33 (N/A)

The organization of the paper is as follows. In Section 2, we provide improved
upper and lower bounds of both deterministic and randomized strategy-proof
mechanisms for the two-facility game. In Section 3, we study the cases when
each agent controls more than one location. We conclude our paper in Section 4
with several open problems.

2 The Two-Facility Game

In this section, we study strategy-proof mechanisms for the two-facility game.
We first provide a better randomized mechanism achieving approximation ratio
n/2 for social cost. The only previously known upper bound is n − 2, which is
from a deterministic mechanism. Then we study the lower bounds both for the
deterministic and randomized cases. For deterministic mechanisms, the lower
bound is improved to 2 from 1.5 in [9]. For randomized mechanisms, we provide
the first non-trivial approximation ratio lower bound of 1.045.

2.1 A Better Randomized Mechanism

The following mechanism is inspirited by Mechanism 2 from [9]. However, our
proof is different and much simpler.
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Mechanism 1. See Figure 1 for reference. Let x = {x1, x2, . . . , xn} be the re-
ported locations of the agents. Define lt(x) = min{xi}, rt(x) = max{xi} and
mt(x) = (lt(x) + rt(x))/2. We further define the left boundary lb(x) = max{xi :
i ∈ N, xi ≤ mt(x)} and the right boundary rb(x) = min{xi : i ∈ N, xi ≥ mt(x)}.
Let dist(x) = max{rt(x)−rb(x), lb(x)−lt(x)}. We set lb(x) = lt(x)+dist(x) and
rb(x) = rt(x) − dist(x). The mechanism returns (lt(x), rt(x)) or (lb(x), rb(x)),
each with probability 1/2.

lt(x) rt(x)

mt(x)

rb(x)(rb(x))lb(x) lb(x)

dist(x)

Fig. 1. Mechanism 1 picks (lt(x), rt(x)) or (lb(x), rb(x)), each with probability 1/2

Theorem 1. Mechanism 1 is strategy-proof. The approximation ratio of Mech-
anism 1 is n/2 for social cost.

Proof. We first prove the approximation ratio assuming that all agents report
their true locations. By symmetry, we assume rt(x) − rb(x) ≥ lb(x) − lt(x) as
in Figure 1. Since we only have two facilities, either lt(x) and rb(x) or rb(x)
and rt(x) are served by a same facility. Therefore the optimal solution is least
min{|lt(x)−rb(x)|, |rb(x)−rt(x)|} = dist(x). On the other hand, for each agent,
its expected cost is exactly dist(x)/2 in this mechanism. So Mechanism 1 has an
approximation ratio of n

2 .
We then prove that Mechanism 1 is strategy-proof. We first show that any

point other than the 3 points defining lt(x), rt(x) and rb(x) cannot benefit by
misreporting its location. Let the new configuration be x′. Consider the 3 points
defining the previous lt(x), rt(x) and rb(x). No matter how the 3 points are
partitioned by the new mt(x′), dist(x′) ≥ rt(x) − rb(x), where x′ is the new
configuration. We know that the expected cost for any location in this con-
figuration is at least dist(x′)/2, which is at least as large as the honest cost
dist(x) = rt(x) − rb(x). The same argument also shows lt(x) (resp. rt(x)) does
not have incentive of reporting positions on the left (resp. right).

Consider the point rb(x). Its expected cost is rt(x)−rb(x)
2 if it reports its true

location. By lying, it cannot move the left or right boundary towards itself, and
as a result, its expected cost in any new configuration is at least min{|lt(x) −
rb(x)|, |rb(x)− rt(x)|}/2 = (rt(x)− rb(x))/2. Therefore, the point at rb(x) has
no incentive to lie.

The only possible case left to analyze is that the agent at lt(x) (resp. rt(x)) is
reporting a location to the right (resp. left). Its expected cost is (rt(x)− lb(x))/2
if it reports its true location. Reporting a location on its right can only move
lb(x′) toward right, which will hurt itself. Therefore the agent at lt(x) has no
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incentive to lie. Similar argument also holds if the agent at rt(x) reports its
location on the left of rt(x).

To sum up, no agent has incentive to lie. Therefore, Mechanism 1 is strategy-
proof.

2.2 Lower Bounds

In this section, we show the approximation ratio lower bounds both for deter-
ministic and randomized strategy-proof mechanisms. Both bounds are proved
by the following construction, which is similar to the 1.5 lower bound example
in [9].

−1 0 1 1 + α

n−2 nodesleft node right node

( )
2− 2

n−2

Fig. 2. Lower bound example for the two-facility game

Theorem 2 (Lower bound for deterministic mechanisms). In the two-
facility game, any deterministic strategy-proof mechanism f : Rn → R2 has an
approximation ratio of at least 2− 4

n−2 for social cost.

Proof. See Figure 2 for the configuration. We have n−2 nodes at the origin and
the left node at −1 and the right node at 1.

Assume to the contrary, there exists a strategy-proof mechanism with approx-
imation ratio less than 2. Then this mechanism has to place one facility in the
range (− 2

n−2 ,
2

n−2 ). Now consider the left node and the right node at −1 and
1. At least one of them is 1 − 2/(n− 2) away from its closest facility. Without
loss of generality, assume the right node at 1 is at least 1 − 2

n−2 away from the
facilities.

If there is one facility on the right of 1, it must be placed at a position right
to 2 − 2/(n − 2) by our assumption. In this case, since the optimal cost is 1,
the approximation ratio is at least 2− 4

n−2 as one facility is always close to the
origin.

Now consider the case that the closest facility to the right node at 1 is on
the left. Let I be the image set of the closest facility to the right node when
the right node moves and all other nodes remain fixed. Clearly, by strategy-
proofness, I ∩ ( 2

n−2 , 2 −
2

n−2 ) = ∅. On the other hand, I ∩ [2 − 2
n−2 ,+∞) �= ∅,

otherwise the approximation ratio is unbounded when the right node moves to
the infinity.

Take p as the left most point of I ∩ [2 − 2
n−2 ,+∞). (p always exists, as I is

a closed set.) If we place the right node at p− 1 + 2
n−2 , the closest facility to x

is at p. Therefore, the cost of the mechanism for such a configuration is at least
2− 4

n−2 , as the other facility has to be close to the origin. Because the optimal
cost is still 1, the approximation ratio is at least 2− 4

n−2 .
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If the mechanism is randomized, the output is a distribution overR2. Notice that
in a randomized mechanism, the cost of an agent is measured by the expected
distance from its true location to the closest facility. We give the first non-trivial
(greater than 1) approximation ratio lower bound of strategy-proof mechanisms
for social cost in Theorem 3.

Theorem 3 (Lower bound for randomized mechanisms). In a two-facility
game, any randomized strategy-proof mechanism has an approximation ratio of
at least 1 +

√
2−1

12−2
√

2
− 1

n−2 ≥ 1.045− 1
n−2 for the social cost for any n ≥ 5.

Proof. Again, we consider the point set as in Figure 2. Let the expected distance
from −1, 0 and 1 to the closest facility be e1, e2 and e3 respectively. Clearly,
we have e1 + e2 + e3 ≥ 1. For any randomized strategy-proof mechanism with
approximation ratio at most 2, e2 ≤ 2

n−2 . Without loss of generality, we assume
e3 ≥ 1

2 −
1

n−2 .
Now we place the right node at 1 to a new position at 1 + α for some α ∈

(0, 1/2). Let e′3 be the expected distance from 1+α to the nearest facility at the
new configuration by the same strategy-proof mechanism. Because of strategy-
proofness, e′3 ≥ 1

2 − α − 1
n−2 . (The condition n ≥ 5 guarantees e′3 ≥ 0 for the

optimal α chosen later.)
Let p(x) be the probability density function of the probability that the closest

facility to the right node at 1 + α is at x in the new configuration. When x ≤
− 1

n−2 , the closest facility is at weighted distance at least 1 to nodes at 0. When
x ≥ 1

n−2 , for any placement of the other facility, the sum of the weighted distances
to the closest facility for the nodes at−1 and 0 is at least 1. In these two cases, the

weighted distance to nodes at −1 and 0 is at least 1. Denote P =
∫ 1

n−2

− 1
n−2

p(x)dx.
Therefore, the total cost of the mechanism in the new configuration is at least:

cost ≥ (1− P ) · 1 + e′3 ≥ 1 +
1
2
− α− 1

n− 2
− P.

On the other hand, consider the distance to the node at 1+α. When the closest
facility to 1 + α is x ∈ (− 1

n−2 ,
1

n−2 ), the total weighted distance from the nodes
to the closest facilities is at least 1 + α. Therefore, we have

cost ≥ (1 − P ) · 1 + P · (1 + α) = 1 + α · P.

The optimal ratio is achieved when P = 1/2−α−1/(n−2)
1+α and the approximation

ratio is at least

1 +
1
2
− α− 1

n− 2
− 1/2− α− 1/(n− 2)

1 + α
≥ 1 +

1
2
− 1
n− 2

− α2 + 1/2
1 + α

.

Define g(α) = α2+1/2
1+α . The maximum ratio is achieved when g′(α) = 0 with

α = 2−
√

2
4 , and the approximation ratio is at least 1 +

√
2−1

12−2
√

2
− 1

n−2 .
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Both lower bounds for deterministic and randomized strategy-proof mechanisms
can be generalized to k facilities for k ≥ 3. (Consider the configuration that
two nodes on the two sides, and k − 1 group of nodes in between. Each group
of nodes (including the two singletons) are at unit distance away.) We have a
direct corollary.

Corollary 1 (Lower bound for the k-facility game). In the k-facility game
for k ≥ 2, any deterministic strategy-proof mechanism has an approximation
ratio of at least 2 − 4

m for the social cost, where m = �n−2
k−1 �. Any randomized

strategy-proof mechanism for the k-facility game has an approximation ratio of
at least 1 +

√
2−1

12−2
√

2
− 1

m ≥ 1.045− 1
m .

3 Multiple Locations Per Agent

In this section, we study the case that each agent controls multiple locations.
Assume agent i controls wi locations, i.e., xi = {xi1, xi2, . . . , xiwi}. A (determin-
istic) mechanism with one facility in the multiple locations setting is a function
f : Rw1 × · · · × Rwn → R for n agents. Then, for agent i, its cost is defined as
cost(l,xi) =

∑wi

j=1 |l−xij |, where l is the location of the facility. As before, we are
interested in minimizing the social cost of the agents, i.e.,

∑
i∈N

∑wi

j=1 |l − xij |,
where N = {1, 2, . . . , n}.

We first give a tight analysis of a randomized strategy-proof mechanism pro-
posed in [9]. This in particular confirms a conjecture of [9]. Then we prove the
first approximation ratio lower bound of 1.33 for any randomized truthful mech-
anism. This lower bound even holds for the simplest case that there are only two
player and each controls the same number of locations. As pointed out by [9],
our result here can be directly applied in the incentive compatible regression
learning setting of Dekel et al.[5].

3.1 A Tight Analysis of a Randomized Mechanism

In [9], Procaccia and Tennenholtz proposed the following randomized mechanism
in the setting of multiple locations:

Randomized Median Mechanism: Given x = {x1,x2, . . . ,xn}, return med(xi)
with probability wi/(

∑
j∈N wj).

If wi is even, med(xi) can either report the wi

2 th location or wi

2 +1-th location
of xi. In [9], Procaccia and Tennenholtz gave a tight analysis for the case of two
players(n = 2), which has an approximation ratio of 2+ |w1−w2|

w1+w2
. They proposed

as an open question for the bound in the general setting. In this section, we give
a tight analysis of this randomized mechanism in the general setting, which in
particular confirms the conjecture. Notice that 2 + |w1−w2|

w1+w2
= 3 − 2minj∈N wj∑

j∈N wj
,

when n = 2.

Theorem 4. The Randomized Median Mechanism has an approximate ratio of
3− 2minj∈N wj∑

j∈N wj
for social cost.
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Proof. If n = 1, med(x1) is the optimal solution. So the mechanism has an
approximate ratio of 3− 2w1/w1 = 1. Now we consider the case for n ≥ 2.

Without loss of generality, we can reorder the players so that med(x1) ≤
med(x2) ≤ · · · ≤ med(xn). Then it must be the case that med(x1) ≤ med(x) ≤
med(xn). The idea here is to construct a worst case instance for this mechanism
and then analyze the approximate ratio for the worst case. Let i′ be the largest
i such that med(xi) ≤ med(x).

Claim. We can assume that the worst case satisfies the following properties: (1)
wi is even for all i ∈ N ; (2) for all i ≤ i′, med(xi) returns the wi

2 -th point of xi;
(3) and for all i > i′, med(xi) returns the (wi

2 + 1)-th point of xi.

We justify the claim as follows: if some wi is odd, we can add one more point
for agent i at the global median med(x), then the original med(xi) is still one
of i-th two medians after adding the new point. We still return that value when
we need to return med(xi). After the modification, the expected cost can only
increase while the optimal cost remain the same. So we can assume all wi are
even in a worst case. The properties (2) and (3) are obvious because returning
the other point only improves the performance of the mechanism.

Now we assume that our instance satisfies all properties in Claim 1. By sym-
metry, we can further assume

∑i′

i=1 wi ≥
∑n

i=i′+1 wi. Let W =
∑

j∈N wj and
R(med(xi)) be the rank of med(xi) in the whole set x. Let X be the ordered
global set of x and Xi be the ith location in X . We perturb the points so that
Xi and R(med(xi)) are well defined. Then for all i ≤ i′, R(med(xi)) ≥

∑i
j=1

wi

2 ;
for all i > i′, R(med(xi)) ≤ W −

∑n
j=i

wi

2 . The worst case happens when the
above two sets of inequalities all reach equalities.

We further make the two sides more symmetric as follows. If w1 > wn, previ-
ously, the mechanism returns Xw1

2
with probability w1

W and returns XW+1−wn
2

with probability wn

W . We modify the mechanism by returningXwn
2

andXW+1−wn
2

both with probability wn

W and returning Xw1
2

with probability w1−wn

W . We con-
tinue this process and finally we can get the following mechanism. There are
0 = k0 < k1 < k2 < · · · < km and l ≤ m. The mechanism returns Xki and
XW+1−ki both with probability ki−ki−1

km+kl
if 1 ≤ i ≤ l; returns Xki with probabil-

ity ki−ki−1
km+kl

if l < i ≤ m. (The meaning of kjs are roughly kj =
∑j

i=1
wi

2 . However
due to the symmetrization process described above, we also have kj =

∑n−j
i=n

wi

2

for j ≤ l.) We have k1 = min{w1,wn}
2 ≥ minj∈N wj

2 and km + kl = W/2.
To simply the notation, we define ī = W +1−i and K = km +kl. The optimal

solution is OPT =
∑W/2

i=1 (Xī−Xi) ≥ s =
∑m

j=1 aj , where aj =
∑kj

i=kj−1+1(Xī−
Xi). Now we can compute the expected cost for this mechanism. For 1 ≤ i ≤ l,
we calculate the cost for Xki and Xk̄i

together. They both have probability
ki−ki−1
km+kl

.

The cost for Xki is
∑i

j=1 aj +
∑W/2

j=ki+1(|Xj − Xki | + |Xj̄ − Xki |). And we

write that the cost for Xk̄i
as
∑i

j=1 aj +
∑W/2

j=ki+1(|Xj −Xk̄i
|+ |Xj̄ −Xk̄i

|). We
combine the cost of Xki and Xk̄i

together.
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2
i∑

j=1

aj + 2
W/2∑

j=ki+1

|Xk̄i
−Xki |

= 2
i∑

j=1

aj + 2(K − ki)|Xk̄i
−Xki | ≤ 2

i∑
j=1

aj + 2
ai(K − ki)
kj − kj−1

Now consider the case for l + 1 ≤ i ≤ m. Similarly, the cost of Xki is

i∑
j=1

aj +
W/2∑

j=ki+1

(|Xj −Xki |+ |Xj̄ −Xki |) ≤
i∑

j=1

aj + 2
ai(K − ki)
kj − kj−1

Therefore the expected cost of the mechanism is no more than

l∑
j=1

kj − kj−1

K
(2

j∑
i=1

ai + 2
aj(K − kj)
kj − kj−1

) +
m∑

j=l+1

kj − kj−1

K
(

j∑
i=1

ai + 2
aj(K − kj)
kj − kj−1

)

≤ 1
K

(2kl

l∑
i=1

ai + (km − kl)
l∑

i=1

ai + km

m∑
i=l+1

ai − 2k1

m∑
j=1

aj) + 2s

=
1
K

(K
l∑

i=1

ai + km

m∑
i=l+1

ai − 2k1

m∑
j=1

aj) + 2s

≤ (3− 2k1

K
)s ≤ (3− 2 minj∈N wj∑

j∈N wj
)OPT

The following corollary confirms a conjecture of [9] regarding the case where
each agent controls the same number of locations.

Corollary 2. If all the players control the same number of locations, the ap-
proximate ratio of Randomized Median Mechanism is 3− 2

n for social cost.

3.2 Lower Bounds for Randomized Strategy-Proof Mechanisms

In this section, we consider the lower bound of the approximation ratios for ran-
domized strategy-proof mechanisms in the multiple locations setting. We first
give a 1.2 lower bound of the approximation ratio, based on a very simple in-
stance. Then we extend to a more complicated instance, which we derive a lower
bound of 1.33 by solving a linear programming instance.

Theorem 5. Any randomized strategy-proof mechanism of the one-facility game
has an approximation ratio at least 1.2 for social in the setting that each agent
controls multiple locations.

Proof. We assume to the contrary that there exists one strategy-proof mecha-
nism M which has an approximate ratio c < 1.2. Consider the following three
instances:
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Instance 1: First player has 2 points at 0 and 1 point at 1; second player has
3 points at 1.

Instance 2: First player has 3 points at 0; second player has 3 points at 1.
Instance 3: First player has 3 points at 0; second player has 1 point at 0 and

2 points at 1.

Let P1, P2 and P3 be the distribution of the facility the mechanism M gives for
these three instances respectively. For all x ∈ R and a distribution P on R, we
use cost(P, x) to denote Ey∼P |y − x|. Then we have (for all i = 1, 2, 3)

cost(Pi, 0) + cost(Pi, 1) ≥ 1.

We use p1(x), p2(x) and p3(x) to denote the probability density function of P1, P2
and P3 respectively. Let

∀i ∈ {1, 2, 3}, Li =
∫ 0

−∞
−xpi(x)dx and Ri =

∫ +∞

1
(x− 1)pi(x)dx.

Now, we computer the cost of the players in each distribution. For the first player
in Instance 1, its cost in distribution Pi is

2cost(Pi, 0) + cost(Pi, 1) = cost(Pi, 0) + (cost(Pi, 0) + cost(Pi, 1))

= cost(Pi, 0) +
∫ +∞

−∞
(|x|+ |x− 1|)pi(x)dx = cost(Pi, 0) + 2Li + 2Ri + 1

Since L1, R1 ≥ 0, It’s easy to see

cost(P1, 0) ≤ cost(P1, 0) + 2(L1 +R1) ≤ cost(P2, 0) + 2(L2 +R2), (1)

where the second inequality is because of the strategy-proofness (of the first
player in Instance 1). By symmetry, we also have

cost(P3, 1) ≤ cost(P2, 1) + 2(L2 +R2). (2)

Using similar calculation as above, we can get the expected cost of Instance 1
as follows.

2cost(P1, 0) + 4cost(P1, 1) = 2cost(P1, 1) + 2(2L1 + 1 + 2R1) ≥ 2cost(P1, 1) + 2.

Since the optimal cost is 2 and the approximate ratio is less than 1.2, we know
that cost(P1, 1) + 2 < 2 × 1.2 = 2.4. Therefore, we have cost(P1, 1) < 0.2
and hence cost(P1, 0) > 0.8. Substituting the above inequality into (1), we get
cost(P2, 0) + 2(L2 + R2) > 0.8. Again by symmetry, we also have cost(P2, 1) +
2(L2 +R2) > 0.8. Adding these two inequalities together, we have cost(P2, 0) +
cost(P2, 1) + 4(L2 + R2) > 1.6. We also have cost(P2, 0) + cost(P2, 1) = 1 +
2(L2 + R2). Substituting this, we get L2 + R2 > 0.1. On the other hand, note
the approximate ratio condition of Instance 2 requires that 1+2(L2+R2) < 1.2.
Thus we reach a contradiction.
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To prove the lower bound of 1.33, we extend the above instances as follows. We
employ 2K + 1 (K ≥ 1 is an integer) instances (for K = 1, this is exactly the
same set of instances as above):

Instance i (1 ≤ i ≤ K): First player has K+ i points at 0 and K+1− i points
at 1; second player has all 2K + 1 points at 1.

Instance K + 1: First player has all 2K + 1 points at 0; second player has all
2K + 1 points at 1.

Instance i (K + 2 ≤ i ≤ 2K + 1): First player has all 2K + 1 points at 0; sec-
ond player has i−K − 1 points at 0 and 3K + 2− i points at 1.

Again, let Pi be the distribution of output of the mechanism on Instance i.
Define the variables as Xi = cost(Pi, 0) and Yi = cost(Pi, 1). Then, the strategy-
proofness among the instances can be listed as linear constrains. Assume the
approximation ratio is α. We want to compute the minimal ratio α so that all
constrains are satisfied. It is then straightforward to formulate the following
linear programming problem.

Minimize: α

Subject to:
(K + i)Xi + (3K + 2− i)Yi ≤ (K + i)α, 1 ≤ i ≤ K + 1
(K + i)Xi + (3K + 2− i)Yi ≤ (3K + 2− i)α, K + 2 ≤ i ≤ 2K + 1
(K + i)Xi + (K + 1− i)Yi

≤ (K + i)Xi+1 + (K + 1− i)Yi+1, 1 ≤ i ≤ K

(i−K − 1)Xi + (3K + 2− i)Yi

≤ (i−K − 1)Xi−1 + (3K + 2− i)Yi−1, K + 2 ≤ i ≤ 2K + 1
Xi ≥ 0, Yi ≥ 0, Xi + Yi ≥ 1, 1 ≤ i ≤ 2K + 1

First two sets of constrains come from the approximate ratio constrain. The next
two sets of constrains are enforced by strategy-proofness. And the last two sets
of constrains are boundary conditions.

Choosing K = 500, we solve this LP problem by computer and the optimal
value is greater than 1.33. Therefore, if we set the approximation ratio to 1.33,
there is no feasible solution for the linear programming which implies no feasible
strategy-proof mechanism for the instances. So we have an approximation lower
bound of 1.33.

Theorem 6. Any randomized strategy-proof mechanism of the one-facility game
has an approximation ratio at least 1.33 in the setting that each agent controls
multiple locations.

The numerical computation suggests that the optimal value for this LP problem
is close to 4

3 when K is large. It would be interesting to give an analytical proof
for a lower bound of 4

3 . We leave it as an open question.
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4 Conclusion

In this paper, we study the strategy-proof mechanisms in facility games. We
derive approximation bounds for such mechanisms for social cost both in the
two-facility game and the multiple location setting. Our results improves several
bounds previously studied [9]. We also obtain some new approximation ratio
lower bounds.

There are still a lot of interesting open questions. For example, in the two-
facility game, the deterministic mechanism has an approximation ratio of n− 2
for social cost, while the lower bound is only 2. In randomized case, there is also
a huge gap between n/2 and 1.045.
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